Sviluppi di Taylor
Esercizi proposti

Esercizio 1
Calcolare lo sviluppo di Taylor (con resto di Peano) delle seguenti funzioni nel punto x_0 indicato e all’ordine n indicato:

1. $f(x) = 2^x$ (con $x_0 = 2$, $n = 3$)
 Soluzione: $f(x) = 4 + 4 \ln 2(x - 2) + 2 \ln^2 2(x - 2)^2 + \frac{2}{3} \ln^3 2(x - 2)^3 + o((x - 2)^3)$

2. $f(x) = \log(2 - x)$ (con $x_0 = 1$, $n = 3$)
 Soluzione: $f(x) = -(x - 1) - \frac{1}{2}(x - 1)^2 - \frac{1}{3}(x - 1)^3 + o((x - 1)^3)$

3. $f(x) = \sin x$ (con $x_0 = \frac{\pi}{2}$, $n = 2$)
 Soluzione: $f(x) = \frac{x^2}{2} + \frac{1}{2} (x - \frac{\pi}{2}) + \frac{\pi^2}{2} (x - \frac{\pi}{2})^2 + o \left((x - \frac{\pi}{2})^2 \right)$

Esercizio 2
Calcolare lo sviluppo di Taylor (con resto di Peano) delle seguenti funzioni nel punto $x_0 = 0$ e all’ordine n indicato:

1. $f(x) = \sin^2 x$ (con $n = 6$)
 \[f(x) = x^2 + \frac{x^4}{4} + \frac{2x^6}{45} + o(x^6) \]

2. $f(x) = \sin^2 x - \sin(x^2)$ (con $n = 4$)
 \[f(x) = -x^4 + o(x^4) \]

3. $f(x) = (e^x - 1)^2$ (con $n = 5$)
 \[f(x) = x^2 + x^3 + \frac{7}{12} x^4 + \frac{5}{4} x^5 + o(x^5) \]

4. $f(x) = \log(1 - \sin^2 x)$ (con $n = 4$)
 \[f(x) = -x^2 - \frac{x^4}{6} + o(x^4) \]

5. $f(x) = \frac{1}{1 + 3x - x^2}$ (con $n = 4$)
 \[f(x) = 1 - 3x + 10x^2 - 33x^3 + 109x^4 + o(x^4) \]

6. $f(x) = \sqrt{1 + \sin x}$ (con $n = 3$)
 \[f(x) = 1 + \frac{x^2}{2} - \frac{x^4}{8} + \frac{x^6}{48} + o(x^6) \]

7. $f(x) = \log(2 - \cos x)$ (con $n = 4$)
 \[f(x) = \frac{x^2}{2} - \frac{x^4}{4} + o(x^4) \]

8. $f(x) = \cos(\log(1 + x))$ (con $n = 4$)
 \[f(x) = 1 - \frac{x^2}{2} + \frac{x^4}{2} - \frac{5x^4}{12} + o(x^4) \]

Esercizio 3
Calcolare l’ordine di infinitesimo e la parte principale delle seguenti funzioni:

1. $f(x) = e^{-x} \cos x + \sin x - \cos x$ (con $x \to 0$)
 \[\text{p.p.} = x^2; \text{ ord.} = 2 \]

2. $f(x) = \sin x (\cos 3x - 1)$ (con $x \to 0$)
 \[\text{p.p.} = -\frac{9}{2} x^3; \text{ ord.} = 3 \]

3. $f(x) = e^x \cos x - e^{\cosh x}$ (con $x \to 0$)
 \[\text{p.p.} = -e x^2; \text{ ord.} = 2 \]

4. $f(x) = \tan x (x - \log(1 + x))$ (con $x \to 0$)
 \[\text{p.p.} = \frac{x^3}{2}; \text{ ord.} = 3 \]

5. $f(x) = \sin(\sinh x) - x \cos(x^2)$ (con $x \to 0$)
 \[\text{p.p.} = \frac{13}{30} x^5; \text{ ord.} = 5 \]

6. $f(x) = \sqrt{\cos x} - \sqrt{1 - x^2/2}$ (con $x \to 0$)
 \[\text{p.p.} = \frac{x^4}{18}; \text{ ord.} = 4 \]
Esercizio 4
Utilizzando gli sviluppi di Taylor calcolare i seguenti limiti

1. \[\lim_{x \to 0} \frac{\sinh x - \sin x}{x^3} \quad l = \frac{1}{3} \]

2. \[\lim_{x \to 0} \frac{e^x - \cos x - \sin x}{e^{2x} - e^{x^2}} \quad l = 1 \]

3. \[\lim_{x \to 0} \frac{(2 + \cos(3x) - 3 \cosh x)^4}{\log(1 + x^2)} \quad l = 0 \]

4. \[\lim_{x \to 0} \frac{x^2 - \sin^2 x}{x^3(e^x - \cos x)} \quad l = \frac{1}{5} \]

5. \[\lim_{x \to 0} \frac{\sin^2 x - \sin(x^2)}{x^2 \log(\cos x)} \quad l = \frac{2}{3} \]

6. \[\lim_{x \to 0} \frac{\sqrt{1 - 5x^2 + x^4} - 1 + x^2}{x^4} \quad l = -\frac{9}{5} \]

7. \[\lim_{x \to 0} \frac{\cos(x^4) - 1}{\sqrt{1 + x^8} - \sqrt{1 + x^8}} \quad l = -3 \]

8. \[\lim_{x \to 0} \frac{x \arcsin x - x^2}{\sqrt{1 + x^2} - \cos(x^2)} \quad l = \frac{1}{5} \]

9. \[\lim_{x \to 0} \frac{(1 + x)^{\frac{1}{x}} - e}{x} \quad l = -\frac{e}{2} \]

10. \[\lim_{x \to 0} \frac{1}{x} \left(\frac{1}{\sin x} - \frac{1}{x} \right) \quad l = \frac{1}{6} \]