Tensors and representations

Let (M, g) be a Riemannian manifold of dimension d.
Let ϕ be a tensor with $\{a \in SO(n) : a \cdot \phi = \phi\} = G$.

The holonomy group is a subgroup of G iff $\nabla \phi \equiv 0$. Given

$$\bigwedge^2 T^* \cong so(d) = g \oplus g^\perp,$$

Lemma $\nabla \phi$ can be identified with an element of the space

$$T^* \otimes g^\perp =: \mathcal{W} = \bigoplus_{i=1}^{N} \mathcal{W}_i,$$

with say N irreducible components.

Examples

<table>
<thead>
<tr>
<th>d</th>
<th>ϕ</th>
<th>G</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2n$</td>
<td>almost complex structure J</td>
<td>$U(n)$</td>
<td>4</td>
</tr>
<tr>
<td>$2n$</td>
<td>non-degenerate 2-form ω</td>
<td>$U(n)$</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>positive generic 3-form</td>
<td>G_2</td>
<td>4</td>
</tr>
<tr>
<td>$4k$</td>
<td>quaternionic 4-form $\sum_{i=1}^{3} \omega^i \wedge \omega^i$</td>
<td>$Sp(k)Sp(1)$</td>
<td>6</td>
</tr>
</tbody>
</table>

1
Sixteen classes of almost Hermitian manifolds

Given (M^{2n}, g) with $\phi = J$ and $G = U(n)$,

Proposition [GH 80]

$$\nabla J \in \mathcal{W}_1 \oplus \mathcal{W}_2 \oplus \mathcal{W}_3 \oplus \mathcal{W}_4$$

Two halves of equal dimension $n^2(n - 1)$ lead to a sort of duality:

- $\nabla J \in \mathcal{W}_1 \oplus \mathcal{W}_2 \iff (d\omega)^{1,2} = 0$
- $\nabla J \in \mathcal{W}_3 \oplus \mathcal{W}_4 \iff M$ is Hermitian

M is Kähler iff $\nabla J \equiv 0$.
Sixteen classes of almost Hermitian manifolds

Given \((M^{2n}, g)\) with \(\phi = J\) and \(G = U(n)\),

Proposition [GH 80]

\[
\nabla J \in \mathcal{W}_1 \oplus \mathcal{W}_2 \oplus \mathcal{W}_3 \oplus \mathcal{W}_4
\]

Two halves of equal dimension \(n^2(n - 1)\) lead to a sort of duality:

- \(\nabla J \in \mathcal{W}_1 \oplus \mathcal{W}_2 \Leftrightarrow (d\omega)^{1,2} = 0\)
- \(\nabla J \in \mathcal{W}_3 \oplus \mathcal{W}_4 \Leftrightarrow M\) is **Hermitian**

If \(M\) is locally conformally Kähler then \(\nabla J \in \mathcal{W}_4\).

Proposition [G65] If \(M\) has \((d\omega)^{1,2} = 0\), and \(M' \subset M\) is pseudo-holomorphic, then \(M'\) is minimal.

Definition \(M\) is **nearly-Kähler** if \(\nabla J \in \mathcal{W}_1\), equivalently \((\nabla_X J)X = 0\) for all \(X\).

Basic model is \(S^6 = \frac{G_2}{SU(3)}\), but there is a large class of homogeneous examples.
3-symmetric spaces

$M = G/H$ is a 3-symmetric space if H is the fixed point set of an automorphism θ of G with $\theta^3 = 1$. Defining $J = \frac{1}{\sqrt{3}}(2\theta + 1)$ gives a canonical a.c.s. on $T_m M$.

Theorem [WG 68] Any 3-symmetric space has a nearly-Kähler metric.

Classification includes

- generalizations of S^6 with irreducible isotropy (e.g. $\frac{E_8}{SU(9)}$)
- $G \times G = \frac{G \times G \times G}{G}$ (e.g. $S^3 \times S^3$)
- twistor spaces over symmetric spaces (e.g. \mathbb{CP}^3, \mathbb{RP}^3)
3-symmetric spaces

\(M = G/H \) is a 3-symmetric space if \(H \) is the fixed point set of an automorphism \(\theta \) with \(\theta^3 = 1 \). Defining \(J = \frac{1}{\sqrt{3}}(2\theta + 1) \) gives a canonical a.c.s. on \(T_m M \).

Theorem [WG 68] Any 3-symmetric space has a nearly-Kähler metric.

Examples include
- generalizations of \(S^6 \) with irreducible isotropy (e.g. \(\frac{E_8}{SU(9)} \))
- \(G \times G = \frac{G \times G \times G}{G} \) (e.g. \(S^3 \times S^3 \))
- twistor spaces over symmetric spaces (e.g. \(\mathbb{CP}^3, \mathbb{RP}^3 \))

The latter are extensively used in the study of minimal surfaces and harmonic maps.

Any such \(Z \) has an integrable complex structure \(J_2 \) in addition to \(J = J_2 \).

Proposition If \(f: \Sigma \to (Z, J_2) \) is a pseudo-holomorphic curve then \(\pi \circ f \) is harmonic.

E.g.

\[
\begin{align*}
\frac{U(p + q + 1)}{U(p) \times U(q) \times U(1)} &= Z \\
S^2 = \mathbb{CP}^1 &\to \frac{U(n + 1)}{U(n) \times U(1)} = \mathbb{CP}^n
\end{align*}
\]
Metrics with exceptional holonomy

Theorem [G76] If M^6 is nearly-Kähler (and $\nabla J \neq 0$), it is Einstein.

E.g. (\mathbb{CP}^3, J_2). In fact, $R = sR_{S^6} + R_{CY}$ with scalar curvature $s > 0$. The theory of Killing spinors implies that the cone $M \times \mathbb{R}^+$ has a Ricci-flat metric with holonomy in G_2.

More generally, if X^7 has a 3-form ϕ defining a G_2-structure, there is a vector cross product $\wedge^2 T^* \rightarrow T^*$ [G67], and

$$\nabla \phi \in T^* \otimes \mathfrak{g}_2^\perp \cong T^* \otimes T^* \cong \mathbb{R} \oplus S^2 T^* \oplus T^* \oplus \mathfrak{g}_2$$

Corollary [FG82]
- X has holonomy in G_2 iff $d(*\phi) = 0$ and $d\phi = 0$
- $\nabla \phi \in \mathbb{R}$ iff $d\phi = c(*\phi)$ ($\Rightarrow d(*\phi) = 0$)
Metrics with exceptional holonomy

Theorem [G76] If M^6 is nearly-Kähler (and $\nabla J \neq 0$), it is Einstein.

E.g. $(\mathbb{C}P^3, J_2)$. In fact, $R = sR_{S^6} + R_{CY}$ with scalar curvature $s > 0$.
The theory of Killing spinors implies that the cone $M \times \mathbb{R}^+$ has a Ricci-flat metric with holonomy in G_2.

More generally, if X^7 has a 3-form ϕ defining a G_2-structure, there is a vector cross product $\bigwedge^2 T^* \rightarrow T^*$ [G67], and

$$\nabla \phi \in T^* \otimes g_2^1 \cong T^* \otimes T^* \cong \underbrace{\mathbb{R} \oplus S_0^2 T^*}_{d\phi} \oplus T^* \oplus g_2$$

Corollary [FG82]

- X has holonomy in G_2 iff $d(*\phi) = 0$ and $d\phi = 0$
- $\nabla \phi \in \mathbb{R}$ iff $d\phi = c(*\phi)$

In the second case, X^7 has weak holonomy G_2 (associative subspaces are preserved by parallel transport [G71]), and the cone $X \times \mathbb{R}^+$ has a metric with holonomy in $Spin 7$.

Standard model $S^7 = \frac{Spin 7}{G_2}$ yields the flat metric on \mathbb{R}^8, but $\frac{SO(5)}{SO(3)} \times \mathbb{R}^+$ has holonomy equal to $Spin 7$.
Curvature theorems

Theorem [G77] A compact Kähler manifold with nonnegative sectional curvature and
s constant is locally symmetric (i.e. $\nabla R \equiv 0$).

On an almost-Hermitian manifold, $R = K + K^\perp$, where
- K satisfies $K(W, X, Y, Z) = K(W, X, JY, JZ)$
- $K^\perp = C(\nabla \nabla J)$ has zero holomorphic sectional curvature

k, K^\perp decompose further under $GL(n, \mathbb{C})$ and $U(n)$.

Proposition [G76] If M is Hermitian then

This imposes $k = \frac{1}{6}n^2(n^2 - 1)$ equations on the Weyl tensor, itself of dimension $< 8k$.

Problem A Riemannian manifold M^{2n} has a \textit{finite} number k of orthogonal complex structures locally. What is the maximum value of k?
Volume $V(r)$ of a small geodesic ball $B(r)$

- $V(1) = \pi^{d/2} / (d/2)!$ in \mathbb{R}^d
- If $V(r_d) = 1$ then $r_d \sim \sqrt{\frac{d}{2\pi e}}$ as $d \to \infty$
- $B(r_d) \cap (\mathbb{R}^{d-1} \times [-0.4, 0.4])$ has volume > 0.8

[Zoom in]
Volume $V(r)$ of a small geodesic ball $B(r)$

- $V(1) = \pi^{d/2}/(d/2)!$ in \mathbb{R}^d
- If $V(r_d) = 1$ then $r_d \sim \sqrt{\frac{d}{2\pi e}}$ as $d \to \infty$
- $B(r_d) \cap (\mathbb{R}^{d-1} \times [-0.4, 0.4])$ has volume > 0.8

On a Riemannian manifold,

$$V(r) = \frac{(\pi r^2)^{d/2}}{(d/2)!} \left(1 - \frac{s}{6(d+2)} r^2 + c_4 r^4 + c_6 r^6 + c_8 r^8 + \cdots \right)$$

Theorem [G73] $c_4 = \frac{8\|\text{Ric}\|^2 - 3\|R\|^2 + 5s^2 - 18\Delta s}{360(d+2)(d+4)}$.

Examples [GV 79] There exist metrics with

- $0 = s = c_4$ and $d = 4$
- $0 = s = c_4 = c_6$ and $d = 734$

Many other asymptotic expansions, and generalizations to tubes.

Theorem [G88] A tube of radius r surrounding a hypersurface of degree k in \mathbb{CP}^n has volume $\pi^n (1 - (1 - k \sin^2 r)^n)/n!$
Example Geodesic cobweb on the paraboloid $z = xy$
Plotted using GEOEQ.m [G 94]
Invariant structures on Lie groups

Any compact simple Lie group G^{2n} admits a complex structure, but no symplectic one. A nilpotent Lie group N^{2n} may or may not admit left-invariant complex or symplectic structures.

Compact nilmanifolds N/Γ never admit Kähler metrics (unless N is abelian). Left-invariant forms provide a minimal model for deRham cohomology with non-zero Massey products. Dolbeault cohomology is less readily computed:

Proposition [CFG91] There exist complex nilmanifolds with

- $n = 4$ and $E_2 \neq E_\infty$
- $n = 6$ and $E_3 \neq E_\infty$.

Theorem [FGM91] A compact surface (U, ω) of genus ≥ 1 with a symplectomorphism $\varphi: U \to U$ fixing $b \in H^1(U, \mathbb{Z})$ defines a circle bundle $E \to (U \times [0, 1])/\varphi$ that is symplectic and generally non-Kähler.

E.g. For $g=1$, E is a Kodaira surface with $b_1 = 3$.

A generalization of the construction accounts for all symplectic manifolds with a free S^1 action.
6-dimensional nilmanifolds

Theorem There are 34 isomorphism classes of real 6-dimensional nilpotent Lie algebras \(\mathfrak{n} \) admitting structures as shown:

For a metric on \(\mathfrak{n} \), almost-Hermitian structures define points of \(\frac{SO(6)}{U(3)} \cong \mathbb{C}P^3 \).

Example For the complex Heisenberg group \(N \) or Iwasawa manifold \(N/\Gamma \),

\[
\nabla J \in \mathcal{W}_1 \oplus \mathcal{W}_2 \oplus \mathcal{W}_3 \Leftrightarrow J \in \mathbb{C}P^2 \cup \mathbb{C}P^2,
\]

and these two ‘faces’ contain all 15 proper Gray-Hervella classes.
6-dimensional nilmanifolds

Theorem There are 34 isomorphism classes of real 6-dimensional nilpotent Lie algebras \(\mathfrak{n} \) admitting structures as shown:

For a metric on \(\mathfrak{n} \), almost-Hermitian structures define points of \(\frac{SO(6)}{U(3)} \cong \mathbb{CP}^3 \).

Example For the complex Heisenberg group \(N \) or Iwasawa manifold \(N/\Gamma \),

\[
\nabla J \in \mathcal{W}_1 \oplus \mathcal{W}_2 \oplus \mathcal{W}_3 \leftrightarrow J \in \mathbb{CP}^2 \cup \mathbb{CP}^2,
\]
and these two ‘faces’ contain all 15 proper Gray-Hervella classes.

Norm of component of \(\nabla J \) in each \(\mathcal{W}_i \)
is represented by respective colour.
6-dimensional nilmanifolds

Theorem There are 34 isomorphism classes of real 6-dimensional nilpotent Lie algebras \mathfrak{n} admitting structures as shown:

For a metric on \mathfrak{n}, almost-Hermitian structures define points of $\frac{SO(6)}{U(3)} \cong \mathbb{C}P^3$.

Example For the complex Heisenberg group N or Iwasawa manifold N/Γ,

$$\nabla J \in \mathcal{W}_1 \oplus \mathcal{W}_2 \oplus \mathcal{W}_3 \iff J \in \mathbb{C}P^2 \cup \mathbb{C}P^2,$$

and these two ‘faces’ contain all 15 proper Gray-Hervella classes.

- $\nabla J \in \mathcal{W}_2 \iff J \in S^3$
6-dimensional nilmanifolds

Theorem There are 34 isomorphism classes of real 6-dimensional nilpotent Lie algebras \(\mathfrak{n} \) admitting structures as shown:

For a metric on \(\mathfrak{n} \), almost-Hermitian structures define points of \(\frac{SO(6)}{U(3)} \cong \mathbb{CP}^3 \).

Example For the complex Heisenberg group \(N \) or Iwasawa manifold \(N/\Gamma \),

\[
\nabla J \in \mathcal{W}_1 \oplus \mathcal{W}_2 \oplus \mathcal{W}_3 \leftrightarrow J \in \mathbb{CP}^2 \cup \mathbb{CP}^2 ,
\]

and these two ‘faces’ contain all 15 proper Gray-Hervella classes.

- \(\nabla J \in \mathcal{W}_3 \leftrightarrow J \in \{\text{pt}\} \sqcup \mathbb{CP}^1 \)
6-dimensional nilmanifolds

Theorem There are 34 isomorphism classes of real 6-dimensional nilpotent Lie algebras \(\mathfrak{n} \) admitting structures as shown:

For a metric on \(\mathfrak{n} \), almost-Hermitian structures define points of \(\frac{SO(6)}{U(3)} \cong \mathbb{CP}^3 \).

Example For the complex Heisenberg group \(N \) or Iwasawa manifold \(N/\Gamma \),

\[\nabla J \in \mathcal{W}_1 \oplus \mathcal{W}_2 \oplus \mathcal{W}_3 \Leftrightarrow J \in \mathbb{CP}^2 \cup \mathbb{CP}^2, \]

and these two ‘faces’ contain all 15 proper Gray-Hervella classes.
 - \(\nabla J \in \mathcal{W}_2 \Leftrightarrow J \in S^3 \)
 - \(\nabla J \in \mathcal{W}_3 \Leftrightarrow J \in \{\text{pt}\} \cup \mathbb{CP}^1 \)

Final picture displays \(\nabla J \) as a function of position on the two faces. Pure blue indicates Hermitian structures, and green symplectic ones.