Modeling of Moving Cell Populations

Thomas Hillen

supported by NSERC

University of Alberta, Edmonton
How to find macroscopic models based on information on individuals?

- Two methods.
 - (1) random walk descriptions and the master equation.
 - (2) transport equations and the hydrodynamic scaling.
- Science: (1) models for volume filling.
- Science: (2) models for chemotaxis.
- Science: (3) models for cell movement in fibre networks.
How to find macroscopic models based on information on individuals?

Two methods.
How to find macroscopic models based on information on individuals?

Two methods.

(1) random walk descriptions and the *master equation*.
How to find macroscopic models based on information on individuals?

Two methods.

(1) random walk descriptions and the *master equation*.

(2) transport equations and the *hydrodynamic scaling*.
How to find macroscopic models based on information on individuals?

Two methods.

(1) random walk descriptions and the master equation.

(2) transport equations and the hydrodynamic scaling.

Science: (1) models for volume filling.
How to find macroscopic models based on information on individuals?

Two methods.

(1) random walk descriptions and the master equation.

(2) transport equations and the hydrodynamic scaling.

Science: (1) models for volume filling.

Science: (2) models for chemotaxis
How to find macroscopic models based on information on individuals?

Two methods.

(1) random walk descriptions and the master equation.

(2) transport equations and the hydrodynamic scaling.

Science: (1) models for volume filling.

Science: (2) models for chemotaxis

Science: (3) models for cell movement in fibre networks.
How to find macroscopic models based on information on individuals?

Two methods.

(1) random walk descriptions and the master equation.

(2) transport equations and the hydrodynamic scaling.

Science: (1) models for volume filling.

Science: (2) models for chemotaxis

Science: (3) models for cell movement in fibre networks.

Exercises.
Lecture 1: **Random Walk Models**

(A) Method: Random Walks

(B) Science: The Volume Filling Model

(C) Exercise: 1
Outline

Lecture 1: Random Walk Models
 (A) Method: Random Walks
 (B) Science: The Volume Filling Model
 (C) Exercise: 1

Lecture 2: Transport Equations
 (A) Method: Scaling Limits
 (B) Science: Chemotaxis
 (C) Exercise: 2
Lecture 1: **Random Walk Models**

(A) Method: Random Walks

(B) Science: The Volume Filling Model

(C) Exercise: 1

Lecture 2: **Transport Equations**

(A) Method: Scaling Limits

(B) Science: Chemotaxis

(C) Exercise: 2

Lecture 3: **Movement in Fibre Networks**

(B) Science: Mesenchymal Motion

(C) Exercise: 3
Derivation from a Master Equation

Random walk description (Othmer-Stevens 1997)

$u_i(t)$: Probability to find a particle at x_i at time t.

T_i^\pm: Transitional probabilities per unit of time for one jump to the right (+) or left (−).
Derivation from a Master Equation

Random walk description (Othmer-Stevens 1997)

$u_i(t) :$ Probability to find a particle at x_i at time t.

$T_i^\pm :$ Transitional probabilities per unit of time for one jump to the right (+) or left (-).

Master equation:

$$\frac{du_i}{dt} = T_{i-1}^+ u_{i-1} + T_{i+1}^- u_{i+1} - (T_i^+ + T_i^-) u_i.$$
Example: Diffusion

Assume the grid size is h and

$$T_i^{±} = \alpha.$$
Example: Diffusion

Assume the grid size is h and

$$T_i^\pm = \alpha.$$

$$\frac{d u_i}{d t} = \alpha(u_{i-1} + u_{i+1} - 2u_i)$$
Example: Diffusion

Assume the grid size is h and

$$T_i^\pm = \alpha.$$

$$\frac{d u_i}{dt} = \alpha (u_{i-1} + u_{i+1} - 2u_i)$$

With $h \rightarrow 0$ we find for $u(t, x)$:

$$\frac{d u}{dt} = \alpha h^2 \frac{\partial^2}{\partial x^2} u + O(h^3)$$

The diffusion equation with $D_u = \lim_{h \rightarrow 0} \alpha h^2$.
\(v_i \): Concentration of a chemical signal.

\[
T_i^\pm = \alpha + \beta (\tau(v_{i\pm1}) - \tau(v_i))
\]

\(\tau \): sensitivity function, \(\alpha, \beta \geq 0 \)
\(v_i \): Concentration of a chemical signal.

\[
T_i^\pm = \alpha + \beta (\tau(v_{i\pm 1}) - \tau(v_i))
\]

\(\tau \): sensitivity function, \(\alpha, \beta \geq 0 \)

\[
\frac{du_i}{dt} = \alpha (u_{i+1} - 2u_i + u_{i-1}) - \beta ((u_{i+1} + u_i)(\tau_{i+1} - \tau_i) - (u_i + u_{i-1})(\tau_i - \tau_{i-1}))
\]
Now with Chemotaxis

v_i: Concentration of a chemical signal.

$$T_i^\pm = \alpha + \beta (\tau(v_{i+1}) - \tau(v_i))$$

τ: sensitivity function, $\alpha, \beta \geq 0$

$$\frac{du_i}{dt} = \alpha (u_{i+1} - 2u_i + u_{i-1})$$

$$-\beta((u_{i+1} + u_i)(\tau_{i+1} - \tau_i) - (u_i + u_{i-1})(\tau_i - \tau_{i-1}))$$

With $h \to 0$:

$$u_t = \alpha h^2 u_{xx} - \beta h^2 (2u\tau_x)_x$$
Chemotaxis Equation

\[u_t = D_u u_{xx} - (u\chi(v)v_x)_x, \]

\[D_u = \lim \alpha h^2, \]

\[\chi(v) = \lim 2h^2/\beta \frac{\partial \tau(v)}{\partial v}: \text{chemotactic sensitivity.} \]
Chemotaxis Equation

\[u_t = D_u u_{xx} - (u \chi(v) v_x)_x, \]
\[D_u = \lim \alpha h^2, \]
\[\chi(v) = \lim 2h^2 \beta \frac{\partial \tau(v)}{\partial v}: \text{chemotactic sensitivity.} \]

\[u_t = D_u \Delta u - \nabla \cdot \{ u \chi(v) \nabla v \} \]
\[v_t = D_v \Delta v + g(u, v) \]

(Patlak ’53, Keller + Segel ’70)
Results on Spikes and Finite Time Blow Up

\[
\begin{align*}
 u_t &= \Delta u - \chi \nabla \cdot \{u \nabla v\} \\
 v_t &= D_v \Delta v + \gamma u - \delta v
\end{align*}
\]

(Childress, Percus, Jäger, Luckhaus, Nagai, Senba, Yoshida, Herrero, Velazquez, Levine, Sleeman, Gajewski, Zacharias, Biler, Post, Horstmann, Suzuki, Yagi, Potapov, Hillen, Renclawowicz, etc)

(Childress, Percus, Jäger, Luckhaus, Nagai, Senba, Yoshida, Herrero, Velazquez, Levine, Sleeman, Gajewski, Zacharias, Biler, Post, Horstmann, Suzuki, Yagi, Potapov, Hillen, Renclawowicz, etc)

\[\bar{u}_0 = \int u_0(x) \, dx \]

(Childress, Percus, Jäger, Luckhaus, Nagai, Senba, Yoshida, Herrero, Velazquez, Levine, Sleeman, Gajewski, Zacharias, Biler, Post, Horstmann, Suzuki, Yagi, Potapov, Hillen, Renclawowicz, etc)

\[\bar{u}_0 = \int u_0(x) dx \]

1-D: Spike formation, no blow-up.

(Childress, Percus, Jäger, Luckhaus, Nagai, Senba, Yoshida, Herrero, Velazquez, Levine, Sleeman, Gajewski, Zacharias, Biler, Post, Horstmann, Suzuki, Yagi, Potapov, Hillen, Renclawowicz, etc)

\[\bar{u}_0 = \int u_0(x) dx \]

1-D: Spike formation, no blow-up.

2-D: There exists a threshold \(\theta \) such that

\[\bar{u}_0 \geq \theta \implies \text{blow-up} \]

\[\frac{\theta}{2} \leq \bar{u}_0 < \theta \implies \text{boundary blow-up} \]

\[\bar{u}_0 < \frac{\theta}{2} \implies \text{no blow-up}. \]

(Childress, Percus, Jäger, Luckhaus, Nagai, Senba, Yoshida, Herrero, Velazquez, Levine, Sleeman, Gajewski, Zacharias, Biler, Post, Horstmann, Suzuki, Yagi, Potapov, Hillen, Renclawowicz, etc)

\[\bar{u}_0 = \int u_0(x) \, dx \]

1-D: Spike formation, no blow-up.

2-D: There exists a threshold \(\theta \) such that

\[\bar{u}_0 \geq \theta \quad \Rightarrow \quad \text{blow-up} \]

\[\frac{\theta}{2} \leq \bar{u}_0 < \theta \quad \Rightarrow \quad \text{boundary blow-up} \]

\[\bar{u}_0 < \frac{\theta}{2} \quad \Rightarrow \quad \text{no blow-up.} \]

n-D: There is a threshold as well (Renclawowicz, Hillen 2005).
So What?
So What?

Question 1:
What does finite time blow-up tell us about the biology?
So What?

Question 1:
What does finite time blow-up tell us about the biology?

Question 2:
What does finite time blow-up tell us about the modeling?
Volume Effects

- Volume Filling (H’, Painter)
Volume Effects

- Volume Filling (H’, Painter)
- Quorum Sensing (H’, Painter)
Volume Effects

- Volume Filling (H’, Painter)
- Quorum Sensing (H’, Painter)
- Finite Sampling Radius (H’, Painter, Schmeiser)
Volume Effects

- Volume Filling (H’, Painter)
- Quorum Sensing (H’, Painter)
- Finite Sampling Radius (H’, Painter, Schmeiser)
- Pressure (Preziosi et al.)
Volume Effects

- Volume Filling (H’, Painter)
- Quorum Sensing (H’, Painter)
- Finite Sampling Radius (H’, Painter, Schmeiser)
- Pressure (Preziosi et al.)
- Multi-phase flow (Byrne and Owen)
(3) The Volume Filling Approach

(w. K. Painter)

Increasing chemoattractant concentration

Assumption $q(U_{max}) = 0$ and $q(u) > 0$ for all $0 < u < U_{max}$.

Standard example: $U_{max} = 1$; $q(u) = 1$ for all $0 < u$.
Introduce $q(u)$: probability to find space at a local cell density u
(3) The Volume Filling Approach

(w. K. Painter)

Introduce $q(u)$: probability to find space at a local cell density u

Assumption

$$q(U_{\text{max}}) = 0 \text{ and } q(u) \geq 0 \text{ for all } 0 \leq u < U_{\text{max}}.$$
(3) The Volume Filling Approach

(w. K. Painter)

Introduce $q(u)$: probability to find space at a local cell density u

Assumption

$$q(U_{\text{max}}) = 0 \text{ and } q(u) \geq 0 \text{ for all } 0 \leq u < U_{\text{max}}.$$

Standard example: $U_{\text{max}} = 1$, $q(u) = 1 - u$.

The Volume Filling Model

\[T_i^{\pm} = q(u_{i\pm 1}) (\alpha + \beta(\tau(v_{i\pm 1}) - \tau(v_i))) \]
The Volume Filling Model

\[T_i^\pm = q(u_{i\pm 1})(\alpha + \beta(\tau(v_{i\pm 1}) - \tau(v_i))) \]

Substitute \(T_i^\pm \) into the above master equation and let \(h \to 0 \):

\[
\begin{align*}
 u_t &= \nabla(D_u(q(u) - q'(u)u)\nabla u - q(u)u\chi(v)\nabla v) \\
 v_t &= D_v \Delta v + g(u, v)
\end{align*}
\]
[1] Hillen + Painter 2000:
First mention of the volume filling model; proof of global existence for special cases; numerical pattern formation.
[1] Hillen + Painter 2000:
First mention of the volume filling model; proof of global existence for special cases; numerical pattern formation.

If the domain is large enough we obtain non trivial steady states.
Pattern Formation in 1-D

\[g(u, v) = u - v. \]
Pattern Formation in 2-D

\[\bar{u}_0 = 0.5 \text{ (top), } 0.25 \text{ (middle), } 0.75 \text{ (bottom)} \]
Complete Picture [1]-[7]

- [1] Hillen + Painter 2000:
Complete Picture [1]-[7]

- [1] Hillen + Painter 2000:

- [2] Painter + Hillen 2002:
 Derivation from a random walk description, pattern formation, coarsening.
Complete Picture [1]-[7]

- [1] Hillen + Painter 2000:

- [2] Painter + Hillen 2002:
 Derivation from a random walk description, pattern formation, coarsening.

- [3] D. Wrzosek 2003:
 Existence of a compact global attractor.
Complete Picture [1]-[7]

- [1] Hillen + Painter 2000:
- [2] Painter + Hillen 2002:
 Derivation from a random walk description, pattern formation, coarsening.
- [3] D. Wrzosek 2003:
 Existence of a compact global attractor.
- [4] D. Wrzosek 2004:
 Lyapunov function. ω-limit sets are steady states.
[5] Potapov + Hillen 2004:
Bifurcation diagram, metastability, numerical estimates of leading eigenvalues, scaling analysis and pattern interaction.
[5] Potapov + Hillen 2004:
Bifurcation diagram, metastability, numerical estimates of leading eigenvalues, scaling analysis and pattern interaction.

Bifurcation Diagram
[6] Dolak + Schmeiser 2004:
Asymptotic analysis of pattern interaction.
[6] Dolak + Schmeiser 2004:
Asymptotic analysis of pattern interaction.

[7] Dolak + Hillen 2003:
Application to Dictyostelium discoideum and to Salmonella typhimurium.
Application to *Dictyostelium discoideum*
Application to *Salmonella typhimurium*
Exercise 1
(with M. Owen)
Consider the Master equation with transitional probabilities of the form

\[T_i^{\pm} = q(u_{i\pm1})\phi(v_i). \]

1. Give an interpretation of these \(T_i^{\pm} \).
2. Show that the continuous limit leads to a chemotaxis equation of the form

\[u_t = (A(u,v)u_x - B(u,v)v_x)_x. \]

Find \(A(u,v) \) and \(B(u,v) \).