SEMINARIO DI GEOMETRIA

23 marzo 2016, h.15,00-16.00

Politecnico di Torino, Dipartimento di Scienze Matematiche, AULA BUZANO

Andreas Hochenegger

(University of Cologne)

Spherelike divisors

Let X be a smooth projective variety of dimension d. An object S in $\mathcal{D}^b(X)$ is called *spherical* if

(1)	Ext^{\bullet}	(S,	S)	=	k	\oplus	$\mathbb{k}[-$	-d];

d-spherelike object Calabi-Yau object

(2) $S \otimes \omega_X \cong S$.

In [ST], P. Seidel and R. Thomas show that such an S defines an autoequivalence T_S , the *spherical twist* about S. In the context of the homological mirror symmetry conjecture, they showed that T_S is dual to the Dehn twist of a symplectic manifold about a Lagrangian.

In general, the Calabi-Yau property of a spherical object will be lost under birational transformations of X. In [HKP], M. Kalck, D. Ploog and I showed how to associate to an arbitrary spherelike object F in a triangulated category \mathcal{D} a unique maximal triangulated subcategory \mathcal{D}_F , where F becomes spherical – the spherical subcategory of F.

In this talk, I will give a short introduction to spherical subcategories and then will focus on the case of *spherelike divisors* D on a surface X, i.e. effective divisors such that \mathcal{O}_D is spherelike. Especially, I will talk about a numerical characterisation of these divisors and to what extend they can be classified.

This is work in progress with D. Ploog.

References

[HKP] A. Hochenegger, M. Kalck und D. Ploog: Spherical Subcategories in Algebraic Geometry. Math. Nachr. doi: 10.1002/mana.201400232 (2016), also arXiv:1208.4046.

[HP] A. Hochenegger and D. Ploog: Spherelike and rigid divisors. In preparation.

[ST] P. Seidel, R. Thomas, Braid group actions on derived categories of coherent sheaves. Duke Math. J. 108 (2001), 37-108, also arXiv:math:/0001043.