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Spherelike divisors

Let X be a smooth projective variety of dimension d. An object S in Db(X) is
called spherical if

(1) Ext•(S, S) = k⊕ k[−d]; d-spherelike object
(2) S ⊗ ωX

∼= S. Calabi-Yau object

In [ST], P. Seidel and R. Thomas show that such an S defines an autoequivalence
TS , the spherical twist about S. In the context of the homological mirror symmetry
conjecture, they showed that TS is dual to the Dehn twist of a symplectic manifold
about a Lagrangian.

In general, the Calabi-Yau property of a spherical object will be lost under
birational transformations of X. In [HKP], M. Kalck, D. Ploog and I showed how
to associate to an arbitrary spherelike object F in a triangulated category D a
unique maximal triangulated subcategory DF , where F becomes spherical – the
spherical subcategory of F .

In this talk, I will give a short introduction to spherical subcategories and then
will focus on the case of spherelike divisors D on a surface X, i.e. effective divisors
such that OD is spherelike. Especially, I will talk about a numerical characterisation
of these divisors and to what extend they can be classified.

This is work in progress with D. Ploog.
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