Schubert Calculus on a Grassmann Algebra

Letterio Gatto

Politecnico di Torino

Brolo, September 12th–15th, 2007
This slide show
(and more on this subject)
is available at the URL:

http://calvino.polito.it/~gatto
This slide show
(and more on this subject)
is available at the URL:

http://calvino.polito.it/~gatto
This slide show (and more on this subject) is available at the URL:

http://calvino.polito.it/~gatto
References
Summary

1. References
2. Set Up
Summary

1. References
2. Set Up
3. Exterior Algebra

Letterio Gatto
Schubert Calculus on a Grassmann Algebra
Summary

1. References
2. Set Up
3. Exterior Algebra
4. SCGA
Summary

1. References
2. Set Up
3. Exterior Algebra
4. SCGA
5. The Main Theorem

Newton Formulas in Schubert Calculus

Degree of Schubert Varieties

Rational curves with inflectional tangents at prescribed points.

Letterio Gatto
Schubert Calculus on a Grassmann Algebra
References

Set Up

Exterior Algebra

SCGA

The Main Theorem

Newton Formulas in Schubert Calculus
Summary

1. References
2. Set Up
3. Exterior Algebra
4. SCGA
5. The Main Theorem
6. Newton Formulas in Schubert Calculus
7. Degree of Schubert Varieties
Summary

1 References
2 Set Up
3 Exterior Algebra
4 SCGA
5 The Main Theorem
6 Newton Formulas in Schubert Calculus
7 Degree of Schubert Varieties
8 Rational curves with inflectional tangents at prescribed points.
Summary

1. References
2. Set Up
3. Exterior Algebra
4. SCGA
5. The Main Theorem
6. Newton Formulas in Schubert Calculus
7. Degree of Schubert Varieties
8. Rational curves with inflectional tangents at prescribed points.
References for this talk...

Schubert Calculus via Hasse–Schmidt Derivations,

Letterio Gatto

Schubert Calculus on a Grassmann Algebra
References for this talk...

References for this talk...

References for this talk...

References for this talk...

References for this talk...

References for this talk...

References for this talk...

References for this talk...

References for this talk...

References for this talk...

Let $A := A_0 \oplus A_1 \oplus \ldots$ be a graded ring with $A_0 = \mathbb{Z}$; X an indeterminate over A; $p := X^n - e_1 X^{n-1} + \ldots + (-1)^n e_n \in A[X]$, a monic polynomial of degree n such that $e_i \in A_i$; $M := XA[X]$ and $M(p) = M/pM$.

The A-module $M(p)$ is generated by $\{i : X^i + pM\}$. In particular:

$\{1, \ldots, n\}$ is an A-basis of $M(p)$. One has, e.g.:

$X^{n+1} = e_1 X^n - e_2 X^{n-1} + \ldots - (-1)^n e_n X$.

Letterio Gatto
Schubert Calculus on a Grassmann Algebra
Set Up

Let $A := A_0 \oplus A_1 \oplus \ldots$ be a graded ring with $A_0 = \mathbb{Z}$;
Set Up

- Let $A := A_0 \oplus A_1 \oplus \ldots$ be a graded ring with $A_0 = \mathbb{Z}$;
- X an indeterminate over A;
Set Up

- Let \(A := A_0 \oplus A_1 \oplus \ldots \) be a graded ring with \(A_0 = \mathbb{Z} \);
- \(X \) an indeterminate over \(A \);
- \(p := X^n - e_1 X^{n-1} + \ldots + (-1)^n e_n \in A[X] \), a monic polynomial of degree \(n \) such that \(e_i \in A_i \);
Set Up

- Let $A := A_0 \oplus A_1 \oplus \ldots$ be a graded ring with $A_0 = \mathbb{Z}$;
- X an indeterminate over A;
- $p := X^n - e_1 X^{n-1} + \ldots + (-1)^n e_n \in A[X]$, a monic polynomial of degree n such that $e_i \in A_i$;
- $M := XA[X]$ and $M(p) = M/pM$.

Letterio Gatto
Schubert Calculus on a Grassmann Algebra
Set Up

- Let $A := A_0 \oplus A_1 \oplus \ldots$ be a graded ring with $A_0 = \mathbb{Z}$;
- X an indeterminate over A;
- $p := X^n - e_1X^{n-1} + \ldots + (-1)^ne_n \in A[X]$, a monic polynomial of degree n such that $e_i \in A_i$;
- $M := XA[X]$ and $M(p) = M/pM$.

The A-module $M(p)$ is generated by $\epsilon^i := X^i + pM$.

Letterio Gatto
Schubert Calculus on a Grassmann Algebra
Set Up

- Let $A := A_0 \oplus A_1 \oplus \ldots$ be a graded ring with $A_0 = \mathbb{Z}$;
- X an indeterminate over A;
- $p := X^n - e_1 X^{n-1} + \ldots + (-1)^n e_n \in A[X]$, a monic polynomial of degree n such that $e_i \in A_i$;
- $M := XA[X]$ and $M(p) = M/pM$.

The A-module $M(p)$ is generated by $\epsilon^i := X^i + pM$. In particular:
Set Up

- Let $A := A_0 \oplus A_1 \oplus \ldots$ be a graded ring with $A_0 = \mathbb{Z}$;
- X an indeterminate over A;
- $p := X^n - e_1X^{n-1} + \ldots + (-1)^n e_n \in A[X]$, a monic polynomial of degree n such that $e_i \in A_i$;
- $M :=XA[X]$ and $M(p) = M/pM$.

The A-module $M(p)$ is generated by $\epsilon^i := X^i + pM$. In particular:

$$(\epsilon^1, \ldots, \epsilon^n),$$
Let $A := A_0 \oplus A_1 \oplus \ldots$ be a graded ring with $A_0 = \mathbb{Z}$;

- X an indeterminate over A;
- $p := X^n - e_1X^{n-1} + \ldots + (-1)^ne_n \in A[X]$, a monic polynomial of degree n such that $e_i \in A_i$;
- $M := XA[X]$ and $M(p) = M/pM$.

The A-module $M(p)$ is generated by $\epsilon^i := X^i + pM$. In particular:

$$(\epsilon^1, \ldots, \epsilon^n),$$

is an A-basis of $M(p)$. One has, e.g.:
Set Up

- Let $A := A_0 \oplus A_1 \oplus \ldots$ be a graded ring with $A_0 = \mathbb{Z}$;
- X an indeterminate over A;
- $p := X^n - e_1 X^{n-1} + \ldots + (-1)^n e_n \in A[X]$, a monic polynomial of degree n such that $e_i \in A_i$;
- $M := XA[X]$ and $M(p) = M/pM$.

The A-module $M(p)$ is generated by $\epsilon^i := X^i + pM$. In particular:

$$ (\epsilon^1, \ldots, \epsilon^n), $$

is an A-basis of $M(p)$. One has, e.g.:

$$ \epsilon^{n+1} = e_1 \epsilon^n - e_2 \epsilon^{n-1} + \ldots - (-1)^n e_n \epsilon^1 $$

Let $M(p) := \bigoplus_{k \geq 0} k M(p)$ be the exterior algebra of $M(p)$. Then:

$\bigwedge^{i_1} \ldots \bigwedge^{i_k}$

$1 \leq i_1 < \ldots < i_k \leq n$ is a basis of $\bigwedge^k M(p)$, the kth exterior power of $M(p)$.
Let

\[M(p) := \bigoplus_{k \geq 0} M(p^k) \]

be the exterior algebra of \(M(p) \). Then:

\[\bigwedge^{i_1} \ldots \bigwedge^{i_k} \]

\(1 \leq i_1 < \ldots < i_k \leq n \) is a basis of \(\bigwedge^k M(p) \), the \(k \)th exterior power of \(M(p) \).

Let

\[\bigwedge M(p) := \bigoplus_{k \geq 0} \bigwedge^k M(p) \]

Let

\[\Lambda M(p) := \bigoplus_{k \geq 0} \Lambda^k M(p) \]

be the exterior algebra of \(M(p) \).

Let

$$\wedge^k M(p) := \bigoplus_{k \geq 0} \wedge^k M(p)$$

be the exterior algebra of $M(p)$.

Then:
Let

\[\wedge M(p) := \bigoplus_{k \geq 0} \wedge^k M(p) \]

be the exterior algebra of \(M(p) \).

Then:

\[(\epsilon^{i_1} \wedge \ldots \wedge \epsilon^{i_k})_{1 \leq i_1 < \ldots < i_k \leq n} \]

Let

$$\wedge M(p) := \bigoplus_{k \geq 0} \wedge^k M(p)$$

be the exterior algebra of $M(p)$.

Then:

$$\left(\epsilon^{i_1} \wedge \ldots \wedge \epsilon^{i_k} \right)_{1 \leq i_1 < \ldots < i_k \leq n}$$

is a basis of $\wedge^k M(p)$, the k^{th} exterior power of $M(p)$.
Example.

Let $M := A \oplus A \oplus A \oplus A$. Then

- $\pi_1 \wedge \pi_2, \pi_3 \wedge \pi_4 = 0$,
- $\pi_1 \wedge \pi_3 = 1$,
- $\pi_1 \wedge \pi_4 = 2$,
- $\pi_2 \wedge \pi_3 = 2$,
- $\pi_2 \wedge \pi_4 = 3$,
- $\pi_3 \wedge \pi_4 = 4$.

is a basis of $\pi_2 M$: $w = (i_1 - 1) + (i_2 - 2)$ is the weight of $\pi_1 \wedge \pi_2$.

Letterio Gatto

Schubert Calculus on a Grassmann Algebra
Example.
Example.

Let $M := A\epsilon_1 \oplus A\epsilon_2 \oplus A\epsilon_3 \oplus A\epsilon_4$. Then
Example.

Let \(M := A\epsilon_1 \oplus A\epsilon_2 \oplus A\epsilon_3 \oplus A\epsilon_4 \). Then

\[
\begin{align*}
\epsilon_1 \wedge \epsilon_2, \\
w &= 0
\end{align*}
\]
Example.

Let $M := A\epsilon^1 \oplus A\epsilon^2 \oplus A\epsilon^3 \oplus A\epsilon^4$. Then

\[w = 0 \quad \text{and} \quad w = 1 \]

are weights of $A\epsilon^1 \wedge A\epsilon^2$, $A\epsilon^1 \wedge A\epsilon^3$, $A\epsilon^1 \wedge A\epsilon^4$.
Example.

Let $M := A\varepsilon^1 \oplus A\varepsilon^2 \oplus A\varepsilon^3 \oplus A\varepsilon^4$. Then

$$
\begin{align*}
\varepsilon^1 \wedge \varepsilon^2, & \quad \text{w=0} \\
\varepsilon^1 \wedge \varepsilon^3, & \quad \text{w=1} \\
\varepsilon^1 \wedge \varepsilon^4, & \quad \text{w=2}
\end{align*}
$$
Example.

Let $M := A\epsilon^1 \oplus A\epsilon^2 \oplus A\epsilon^3 \oplus A\epsilon^4$. Then

$\epsilon^1 \wedge \epsilon^2, \quad \epsilon^1 \wedge \epsilon^3, \quad \epsilon^1 \wedge \epsilon^4, \quad \epsilon^2 \wedge \epsilon^3,$

$w=0, \quad w=1, \quad w=2, \quad w=2$
Example.

Let $M := A\epsilon^1 \oplus A\epsilon^2 \oplus A\epsilon^3 \oplus A\epsilon^4$. Then

\[
\begin{align*}
\epsilon^1 \wedge \epsilon^2, & \quad w = 0 \\
\epsilon^1 \wedge \epsilon^3, & \quad w = 1 \\
\epsilon^1 \wedge \epsilon^4, & \quad w = 2 \\
\epsilon^2 \wedge \epsilon^3, & \quad w = 2 \\
\epsilon^2 \wedge \epsilon^4, & \quad w = 3
\end{align*}
\]
Example.

Let $M := A\mathbf{e}^1 \oplus A\mathbf{e}^2 \oplus A\mathbf{e}^3 \oplus A\mathbf{e}^4$. Then

$\mathbf{w} = \begin{cases} (i_1 - 1) + (i_2 - 2) & \text{weight of } \mathbf{i}_1 \wedge \mathbf{i}_2 \end{cases}$

\[
\begin{array}{cccc}
\mathbf{e}_1 \wedge \mathbf{e}_2, & \mathbf{e}_1 \wedge \mathbf{e}_3, & \mathbf{e}_1 \wedge \mathbf{e}_4, & \mathbf{e}_2 \wedge \mathbf{e}_3, \\
\quad w=0 & \quad w=1 & \quad w=2 & \quad w=3 & \quad w=4
\end{array}
\]
Example.

Let $M := A\epsilon^1 \oplus A\epsilon^2 \oplus A\epsilon^3 \oplus A\epsilon^4$. Then

$$
\begin{align*}
\epsilon^1 \wedge \epsilon^2, & \quad w=0 \\
\epsilon^1 \wedge \epsilon^3, & \quad w=1 \\
\epsilon^1 \wedge \epsilon^4, & \quad w=2 \\
\epsilon^2 \wedge \epsilon^3, & \quad w=2 \\
\epsilon^2 \wedge \epsilon^4, & \quad w=3 \\
\epsilon^3 \wedge \epsilon^4, & \quad w=4
\end{align*}
$$

is a basis of $\bigwedge^2 M$: $w = (i_1 - 1) + (i_2 - 2)$ is the weight of $\epsilon^{i_1} \wedge \epsilon^{i_2}$
A Basic Fact

\[\left(\frac{d^i}{dx^i}(f(j)) \right) = f(i+j) \]
A Basic Fact

\[
\left(\frac{d^i}{dx^i} (f(j)) \right) = f(i+j)
\]

There is one and only one A-algebra homomorphism
There is one and only one A-algebra homomorphism

\[D_t := \sum_{i \geq 0} D_i t^i : \wedge M(p) \rightarrow \wedge M(p)[[t]] \]

\[(D_i \in \text{End}_A(\wedge M(p)) \]
There is one and only one A-algebra homomorphism

$$D_t := \sum_{i \geq 0} D_i t^i : \bigwedge M(p) \longrightarrow \bigwedge M(p)[[t]]$$

$$ (D_i \in \text{End}_A(\bigwedge M(p))$$

such that
There is one and only one A-algebra homomorphism

\[D_t := \sum_{i \geq 0} D_i t^i : \bigwedge M(p) \rightarrow \bigwedge M(p)[[t]] \]

\[(D_i \in End_A(\bigwedge M(p)) \]

such that

\[D_i \epsilon^j = \epsilon^{i+j} \]
Schubert calculus on a Grassmann Algebra.

The explicit way to phrase that D_t is an A-algebra homomorphism is

$$D_t(\alpha \wedge \beta) = D_t\alpha \wedge D_t\beta$$

the fundamental equation of Schubert Calculus (on a Grassmann Algebra).

We are used to such a kind of equations!

If $f, g \in C^\infty(R)$ then:

$$D_t(fg) = D_tf \cdot D_tg$$

where

$$D_t = \sum_{i \geq 0} \frac{1}{i!} d^i dt^i$$

(The Taylor expansion of the product of f and g is the product of the Taylor expansions of f and g respectively.)
Schubert calculus on a Grassmann Algebra.

The explicit way to phrase that D_t is an A-algebra homomorphism is
Schubert calculus on a Grassmann Algebra.

The explicit way to phrase that D_t is an A-algebra homomorphism is

$$D_t(\alpha \wedge \beta) = D_t \alpha \wedge D_t \beta$$
Schubert calculus on a Grassmann Algebra.

The explicit way to phrase that D_t is an A-algebra homomorphism is

$$D_t(\alpha \wedge \beta) = D_t\alpha \wedge D_t\beta$$

the fundamental equation of Schubert Calculus
Schubert calculus on a Grassmann Algebra.

The explicit way to phrase that D_t is an A-algebra homomorphism is

$$D_t(\alpha \wedge \beta) = D_t\alpha \wedge D_t\beta$$

the fundamental equation of Schubert Calculus
(on a Grassmann Algebra)
Schubert calculus on a Grassmann Algebra.

The explicit way to phrase that D_t is an A-algebra homomorphism is

$$D_t(\alpha \wedge \beta) = D_t\alpha \wedge D_t\beta$$

the fundamental equation of Schubert Calculus
(on a Grassmann Algebra)

We are used to such a kind of equations!
The explicit way to phrase that D_t is an A-algebra homomorphism is

$$D_t(\alpha \wedge \beta) = D_t\alpha \wedge D_t\beta$$

the fundamental equation of Schubert Calculus

(on a Grassmann Algebra)

We are used to such a kind of equations!

If $f, g \in C^\infty(\mathbb{R})$ then:
The explicit way to phrase that D_t is an A-algebra homomorphism is

$$D_t(\alpha \wedge \beta) = D_t \alpha \wedge D_t \beta$$

the fundamental equation of Schubert Calculus
(on a Grassmann Algebra)

We are used to such a kind of equations!

If $f, g \in C^\infty(\mathbb{R})$ then:

$$D_t(fg) = D_t(f)D_t(g) \quad \text{where} \quad D_t = \sum_{i \geq 0} \frac{1}{i!} \frac{d^i}{dx^i} t^i$$
The explicit way to phrase that D_t is an A-algebra homomorphism is

\[D_t(\alpha \wedge \beta) = D_t\alpha \wedge D_t\beta \]

the fundamental equation of Schubert Calculus
(on a Grassmann Algebra)

We are used to such a kind of equations!

If $f, g \in C^\infty(\mathbb{R})$ then:

\[D_t(fg) = D_t(f)D_t(g) \quad \text{where} \quad D_t = \sum_{i \geq 0} \frac{1}{i!} \frac{d^i}{dx^i} t^i \]

(The Taylor expansion of the product of f and g is the product of the Taylor expansions of f and g respectively.)
The explicit way to phrase that D_t is an A-algebra homomorphism is

$$D_t(\alpha \wedge \beta) = D_t\alpha \wedge D_t\beta$$

The fundamental equation of Schubert Calculus
(on a Grassmann Algebra)
SCGA I: Leibniz Rule

The fundamental equation is equivalent to:

\[D^h(\alpha \wedge \beta) = h_{\wedge i}(D^i\alpha \wedge D^h\beta), \forall \alpha, \beta \in \mathbb{M} \]

which is the \(h \)th order Leibniz rule \((h \geq 0)\). For example:

\[D^2(\alpha \wedge \beta) = D^2\alpha \wedge \beta + D^1\alpha \wedge D^1\beta + \alpha \wedge D^2\beta \]

One more example:

\[D^2(\pi_1 \wedge \pi_2) = D^2\pi_1 \wedge \pi_2 + D^1\pi_1 \wedge D^1\pi_2 + \pi_1 \wedge D^2\pi_2 = \pi_3 \wedge \pi_2 + \pi_2 \wedge \pi_3 + \pi_1 \wedge \pi_4 \]

Letterio Gatto

Schubert Calculus on a Grassmann Algebra
The fundamental equation is equivalent to:

\[D_h(\alpha \wedge \beta) = \sum_{i=0}^{h} D_i \alpha \wedge D_{h-i} \beta, \quad \forall \alpha, \beta \in M \]

which is the \(h \)th order Leibniz rule (\(h \geq 0 \)). For example:

\[D_2(\alpha \wedge \beta) = D_2 \alpha \wedge \beta + D_1 \alpha \wedge D_1 \beta + \alpha \wedge D_2 \beta \]

One more example:

\[D_2(\xi_1 \wedge \xi_2) = D_2 \xi_1 \wedge \xi_2 + D_1 \xi_1 \wedge D_1 \xi_2 + \xi_1 \wedge D_2 \xi_2 = \xi_1 \wedge \xi_4 + \xi_2 \wedge \xi_3 + \xi_1 \wedge \xi_4 = \xi_1 \wedge \xi_4 \]
The fundamental equation is equivalent to:

\[
D_h(\alpha \wedge \beta) = \sum_{i=0}^{h} D_i \alpha \wedge D_{h-i} \beta, \quad \forall \alpha, \beta \in \bigwedge M
\]
The fundamental equation is equivalent to:

\[D_h(\alpha \wedge \beta) = \sum_{i=0}^{h} D_i \alpha \wedge D_{h-i} \beta, \quad \forall \alpha, \beta \in \bigwedge M \]

which is the \(h^{th} \) order Leibniz rule \((h \geq 0) \). For example:
SCGA I: Leibniz Rule

The fundamental equation is equivalent to:

\[D_h(\alpha \wedge \beta) = \sum_{i=0}^{h} D_i \alpha \wedge D_{h-i} \beta, \quad \forall \alpha, \beta \in \bigwedge M \]

which is the \(h^{th} \) order **Leibniz rule** \((h \geq 0)\). For example:

\[D_2(\alpha \wedge \beta) = \]

Letterio Gatto
Schubert Calculus on a Grassmann Algebra
SCGA I: Leibniz Rule

The fundamental equation is equivalent to:

\[D_h(\alpha \wedge \beta) = \sum_{i=0}^{h} D_i \alpha \wedge D_{h-i} \beta, \quad \forall \alpha, \beta \in \bigwedge M \]

which is the \(h^{th} \) order Leibniz rule (\(h \geq 0 \)). For example:

\[D_2(\alpha \wedge \beta) = D_2 \alpha \wedge \beta + \]
SCGA I: Leibniz Rule

The fundamental equation is equivalent to:

\[D_h(\alpha \wedge \beta) = \sum_{i=0}^{h} D_i \alpha \wedge D_{h-i} \beta, \quad \forall \alpha, \beta \in \bigwedge M \]

which is the \(h^{th} \) order Leibniz rule \((h \geq 0)\). For example:

\[D_2(\alpha \wedge \beta) = D_2 \alpha \wedge \beta + D_1 \alpha \wedge D_1 \beta + \]
SCGA I: Leibniz Rule

The fundamental equation is equivalent to:

\[D_h(\alpha \wedge \beta) = \sum_{i=0}^{h} D_i \alpha \wedge D_{h-i} \beta, \quad \forall \alpha, \beta \in \bigwedge M \]

which is the \(h^{th} \) order Leibniz rule \((h \geq 0) \). For example:

\[D_2(\alpha \wedge \beta) = D_2 \alpha \wedge \beta + D_1 \alpha \wedge D_1 \beta + \alpha \wedge D_2 \beta \]
SCGA I: Leibniz Rule

The fundamental equation is equivalent to:

\[D_h(\alpha \wedge \beta) = \sum_{i=0}^{h} D_i \alpha \wedge D_{h-i} \beta, \quad \forall \alpha, \beta \in \bigwedge M \]

which is the \(h^{th} \) order Leibniz rule \((h \geq 0) \). For example:

\[D_2(\alpha \wedge \beta) = D_2 \alpha \wedge \beta + D_1 \alpha \wedge D_1 \beta + \alpha \wedge D_2 \beta \]

One more example:
The fundamental equation is equivalent to:

\[D_h(\alpha \wedge \beta) = \sum_{i=0}^{h} D_i \alpha \wedge D_{h-i} \beta, \quad \forall \alpha, \beta \in \bigwedge M \]

which is the \(h^{th} \) order Leibniz rule \((h \geq 0)\). For example:

\[D_2(\alpha \wedge \beta) = D_2 \alpha \wedge \beta + D_1 \alpha \wedge D_1 \beta + \alpha \wedge D_2 \beta \]

One more example:

\[D_2(\epsilon^1 \wedge \epsilon^2) = \]
The fundamental equation is equivalent to:

\[D_h(\alpha \land \beta) = \sum_{i=0}^{h} D_i \alpha \land D_{h-i} \beta, \quad \forall \alpha, \beta \in \bigwedge M \]

which is the \(h \)th order Leibniz rule \((h \geq 0)\). For example:

\[D_2(\alpha \land \beta) = D_2 \alpha \land \beta + D_1 \alpha \land D_1 \beta + \alpha \land D_2 \beta \]

One more example:

\[D_2(\varepsilon^1 \land \varepsilon^2) = D_2 \varepsilon^1 \land \varepsilon^2 + \]
The fundamental equation is equivalent to:

\[D_h(\alpha \wedge \beta) = \sum_{i=0}^{h} D_i \alpha \wedge D_{h-i} \beta, \quad \forall \alpha, \beta \in \bigwedge M \]

which is the \(h^{th} \) order Leibniz rule \((h \geq 0)\). For example:

\[D_2(\alpha \wedge \beta) = D_2 \alpha \wedge \beta + D_1 \alpha \wedge D_1 \beta + \alpha \wedge D_2 \beta \]

One more example:

\[D_2(\epsilon^1 \wedge \epsilon^2) = D_2 \epsilon^1 \wedge \epsilon^2 + D_1 \epsilon^1 \wedge D_1 \epsilon^2 + \]
SCGA I: Leibniz Rule

The fundamental equation is equivalent to:

\[D_h(\alpha \wedge \beta) = \sum_{i=0}^{h} D_i \alpha \wedge D_{h-i} \beta, \quad \forall \alpha, \beta \in \wedge M \]

which is the \(h^{th} \) order Leibniz rule \((h \geq 0)\). For example:

\[D_2(\alpha \wedge \beta) = D_2\alpha \wedge \beta + D_1\alpha \wedge D_1\beta + \alpha \wedge D_2\beta \]

One more example:

\[D_2(\epsilon^1 \wedge \epsilon^2) = D_2\epsilon^1 \wedge \epsilon^2 + D_1\epsilon^1 \wedge D_1\epsilon^2 + \epsilon^1 \wedge D_2\epsilon^2 = \]
The fundamental equation is equivalent to:

$$D_h(\alpha \wedge \beta) = \sum_{i=0}^{h} D_i \alpha \wedge D_{h-i} \beta, \quad \forall \alpha, \beta \in \bigwedge M$$

which is the h^{th} order Leibniz rule ($h \geq 0$). For example:

$$D_2(\alpha \wedge \beta) = D_2 \alpha \wedge \beta + D_1 \alpha \wedge D_1 \beta + \alpha \wedge D_2 \beta$$

One more example:

$$D_2(\epsilon^1 \wedge \epsilon^2) = D_2 \epsilon^1 \wedge \epsilon^2 + D_1 \epsilon^1 \wedge D_1 \epsilon^2 + \epsilon^1 \wedge D_2 \epsilon^2 =$$

$$= \epsilon^3 \wedge \epsilon^2 +$$
The fundamental equation is equivalent to:

\[D_h(\alpha \wedge \beta) = \sum_{i=0}^{h} D_i \alpha \wedge D_{h-i} \beta, \quad \forall \alpha, \beta \in \bigwedge M \]

which is the \(h^{th} \) order Leibniz rule (\(h \geq 0 \)). For example:

\[D_2(\alpha \wedge \beta) = D_2 \alpha \wedge \beta + D_1 \alpha \wedge D_1 \beta + \alpha \wedge D_2 \beta \]

One more example:

\[D_2(\epsilon^1 \wedge \epsilon^2) = D_2 \epsilon^1 \wedge \epsilon^2 + D_1 \epsilon^1 \wedge D_1 \epsilon^2 + \epsilon^1 \wedge D_2 \epsilon^2 = \]

\[= \epsilon^3 \wedge \epsilon^2 + \epsilon^2 \wedge \epsilon^3 + \]
SCGA I: Leibniz Rule

The fundamental equation is equivalent to:

\[D_h(\alpha \wedge \beta) = \sum_{i=0}^{h} D_i \alpha \wedge D_{h-i} \beta, \quad \forall \alpha, \beta \in \bigwedge M \]

which is the \(h^{th} \) order Leibniz rule \((h \geq 0) \). For example:

\[D_2(\alpha \wedge \beta) = D_2 \alpha \wedge \beta + D_1 \alpha \wedge D_1 \beta + \alpha \wedge D_2 \beta \]

One more example:

\[D_2(\epsilon^1 \wedge \epsilon^2) = D_2 \epsilon^1 \wedge \epsilon^2 + D_1 \epsilon^1 \wedge D_1 \epsilon^2 + \epsilon^1 \wedge D_2 \epsilon^2 = \]
\[= \epsilon^3 \wedge \epsilon^2 + \epsilon^2 \wedge \epsilon^3 + \epsilon^1 \wedge \epsilon^4 = \]
The fundamental equation is equivalent to:

\[D_h(\alpha \wedge \beta) = \sum_{i=0}^{h} D_i \alpha \wedge D_{h-i} \beta, \quad \forall \alpha, \beta \in \bigwedge M \]

which is the \(h^{th} \) order Leibniz rule (\(h \geq 0 \)). For example:

\[D_2(\alpha \wedge \beta) = D_2\alpha \wedge \beta + D_1\alpha \wedge D_1\beta + \alpha \wedge D_2\beta \]

One more example:

\[D_2(\epsilon^1 \wedge \epsilon^2) = D_2\epsilon^1 \wedge \epsilon^2 + D_1\epsilon^1 \wedge D_1\epsilon^2 + \epsilon^1 \wedge D_2\epsilon^2 = \]

\[= \epsilon^3 \wedge \epsilon^2 + \epsilon^2 \wedge \epsilon^3 + \epsilon^1 \wedge \epsilon^4 = \epsilon^1 \wedge \epsilon^4 \]
SCGA II: Integration by Parts \((\int f \cdot dg = fg - \int df \cdot g) \)
Leibniz’s rule implies
Leibniz’s rule implies

Integration by Parts
Leibniz’s rule implies

Integration by Parts

\[D_h \alpha \wedge e^i = D_h (\alpha \wedge e^i) - D_{h-1} (\alpha \wedge e^{i+1}) \]
Leibniz’s rule implies

Integration by Parts

\[D_h \alpha \wedge e^i = D_h (\alpha \wedge e^i) - D_{h-1} (\alpha \wedge e^{i+1}) \]

For example:
Leibniz’s rule implies

Integration by Parts

\[D_h \alpha \wedge \epsilon^i = D_h (\alpha \wedge \epsilon^i) - D_{h-1} (\alpha \wedge \epsilon^{i+1}) \]

For example:

\[\epsilon^2 \wedge \epsilon^5 = \]
Leibniz’s rule implies

Integration by Parts

\[D_h \alpha \wedge \epsilon^i = D_h (\alpha \wedge \epsilon^i) - D_{h-1} (\alpha \wedge \epsilon^{i+1}) \]

For example:

\[\epsilon^2 \wedge \epsilon^5 = \epsilon^2 \wedge D_1 \epsilon^4 = \]
Leibniz’s rule implies

Integration by Parts

\[D_h \alpha \wedge \epsilon^i = D_h (\alpha \wedge \epsilon^i) - D_{h-1} (\alpha \wedge \epsilon^{i+1}) \]

For example:

\[\epsilon^2 \wedge \epsilon^5 = \epsilon^2 \wedge D_1 \epsilon^4 = D_1 (\epsilon^2 \wedge \epsilon^4) \]
Leibniz’s rule implies

Integration by Parts

\[D_h \alpha \wedge \epsilon^i = D_h (\alpha \wedge \epsilon^i) - D_{h-1} (\alpha \wedge \epsilon^{i+1}) \]

For example:

\[\epsilon^2 \wedge \epsilon^5 = \epsilon^2 \wedge D_1 \epsilon^4 = D_1 (\epsilon^2 \wedge \epsilon^4) - D_1 \epsilon^2 \wedge \epsilon^4 = \]
SCGA II: Integration by Parts \((\int f \cdot dg = fg - \int df \cdot g)\)

Leibniz’s rule implies

Integration by Parts

\[
D_h \alpha \wedge \epsilon^i = D_h (\alpha \wedge \epsilon^i) - D_{h-1} (\alpha \wedge \epsilon^{i+1})
\]

For example:

\[
\epsilon^2 \wedge \epsilon^5 = \epsilon^2 \wedge D_1 \epsilon^4 = D_1 (\epsilon^2 \wedge \epsilon^4) - D_1 \epsilon^2 \wedge \epsilon^4 = D_1 (\epsilon^2 \wedge \epsilon^4) - \epsilon^3 \wedge \epsilon^4
\]
Let $A^*(\bigwedge M(p))$ be the polynomial ring $A[T_1, T_2, \ldots]$. Give degree i to the monomial T_i. Let $ev_D: A[T] \to \text{End}_A(\bigwedge M(p))$ be the natural map $T_i \mapsto D_i$ and $A^*(\bigwedge M(p)) := \text{Im}(ev_D) \subseteq \text{End}_A(\bigwedge M(p))$. Letterio Gatto

Schubert Calculus on a Grassmann Algebra
Let $A[T]$ be the polynomial ring $A[T_1, T_2, \ldots]$.
Let $A[T]$ be the polynomial ring $A[T_1, T_2, \ldots]$. Give degree i to the monomial T_i.

$A^*(\wedge M(p))$
Let $A[T]$ be the polynomial ring $A[T_1, T_2, \ldots]$. Give degree i to the monomial T_i.

Let

$$ev_D : A[T] \rightarrow End_A(\bigwedge M(p))$$

be the natural map $T_i \mapsto D_i$ and
Let $A[T]$ be the polynomial ring $A[T_1, T_2, \ldots]$.

Give degree i to the monomial T_i.

Let

$$ev_D : A[T] \longrightarrow \text{End}_A(\bigwedge M(p))$$

be the natural map $T_i \mapsto D_i$ and

$$A^*(\bigwedge M(p)) := \text{Im}(ev_D) \subseteq \text{End}_A(\bigwedge M(p)).$$
Denote by $A^\star(\bigwedge^k M(p))$ the image of the natural restriction map

$$ \rho_k : A^\star(\bigwedge^k M(p)) \to \text{End} A^\star(\bigwedge^k M(p)) $$

<table>
<thead>
<tr>
<th>Letterio Gatto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schubert Calculus on a Grassmann Algebra</td>
</tr>
</tbody>
</table>
Denote by

\[A^* (\bigwedge^k M(p)) \]
Denote by

$$A^*(\wedge^k M(p))$$
Denote by

\[A^*\left(\bigwedge^k M(p) \right) \]

the image of the natural restriction map
Denote by

$$A^*(\bigwedge^k M(p))$$

the image of the natural restriction map

$$\rho_k : A^*(\bigwedge M(p)) \rightarrow \text{End}_A(\bigwedge^k M(p))$$

$$P(D) \quad \mapsto \quad P(D)|_{\bigwedge^k M(p)}$$
Giambelli’s problem has a solution

Theorem. The natural evaluation map:

\[
\text{ev}^1 \wedge \ldots \wedge \text{ev}^k : A^* \left(V^*_M(p) \right) \to V^*_k M(p) \text{ P(D)} \to P(D) \cdot \text{ev}^1 \wedge \ldots \wedge \text{ev}^k
\]

is surjective.

Proof. Enough to prove that for each \(\text{ev}^i_1 \wedge \ldots \wedge \text{ev}^i_k \in V^*_k M(p) \) there exists a polynomial expression \(P(D) \) such that

\[
\text{ev}^i_1 \wedge \ldots \wedge \text{ev}^i_k = P(D) \cdot \text{ev}^1 \wedge \ldots \wedge \text{ev}^k.
\]

One then concludes using integration by parts. For example:
Giambelli’s problem has a solution

Theorem.

The natural evaluation map:

\[
\begin{cases}
\text{ev}_{\mathbf{1} \wedge \ldots \wedge \mathbf{k}}: A^*(V^*M(p)) \to V_k M(p) \cdot \mathbf{D} \\
\end{cases}
\]

is surjective.

Proof. Enough to prove that for each \(\mathbf{i}_1 \wedge \ldots \wedge \mathbf{i}_k \in \mathbb{k} M(p) \) there exists a polynomial expression \(P(D) \) such that

\[
\mathbf{i}_1 \wedge \ldots \wedge \mathbf{i}_k = P(D) \cdot \mathbf{1} \wedge \ldots \wedge \mathbf{k}.
\]

One then concludes using integration by parts. For example:

Letterio Gatto

Schubert Calculus on a Grassmann Algebra
Giambelli’s problem has a solution

Theorem. The natural evaluation map:

\[
ev_{i_1} \wedge \ldots \wedge ev_{i_k} : A^*(V(M(p))) \to V^k(M(p)) \shortrightarrow P(D) \cdot ev_{i_1} \wedge \ldots \wedge ev_{i_k}
\]

is surjective.

Proof. Enough to prove that for each \(ev_{i_1} \wedge \ldots \wedge ev_{i_k} \in V^k(M(p))\) there exists a polynomial expression \(P(D)\) such that \(ev_{i_1} \wedge \ldots \wedge ev_{i_k} = P(D) \cdot ev_{i_1} \wedge \ldots \wedge ev_{i_k}\).

One then concludes using integration by parts. For example:
Giambelli’s problem has a solution

Theorem. The natural evaluation map:

\[
\begin{align*}
\text{ev}_{\epsilon_1 \wedge \ldots \wedge \epsilon^k} : & \quad A^*(\wedge M(p)) \rightarrow \wedge^k M(p) \\
& \quad P(D) \longmapsto P(D) \cdot \epsilon^1 \wedge \ldots \wedge \epsilon^k
\end{align*}
\]
Theorem. The natural evaluation map:

\[
\begin{align*}
\text{ev}_{\epsilon^1 \wedge \ldots \wedge \epsilon^k} : \mathcal{A}^*(\wedge M(p)) & \longrightarrow \wedge^k M(p) \\
P(D) & \longmapsto P(D) \cdot \epsilon^1 \wedge \ldots \wedge \epsilon^k
\end{align*}
\]

is surjective.
Giambelli’s problem has a solution

Theorem. The natural evaluation map:

\[
\begin{cases}
\text{ev}_{\epsilon_1 \wedge \ldots \wedge \epsilon^k} : \mathcal{A}^*(\wedge M(p)) & \longrightarrow & \wedge^k M(p) \\
P(D) & \longmapsto & P(D) \cdot \epsilon^1 \wedge \ldots \wedge \epsilon^k
\end{cases}
\]

is surjective.

Proof.
Giambelli’s problem has a solution

Theorem. The natural evaluation map:

\[
\begin{aligned}
ed_{\epsilon^1 \wedge \ldots \wedge \epsilon^k} : \mathcal{A}^*(\wedge M(p)) &\longrightarrow \wedge^k M(p) \\
P(D) &\longmapsto P(D) \cdot \epsilon^1 \wedge \ldots \wedge \epsilon^k
\end{aligned}
\]

is surjective.

Proof. Enough to prove that for each \(\epsilon^i_1 \wedge \ldots \wedge \epsilon^i_k \in \wedge^k M(p) \) there exists a polynomial expression \(P(D) \) such that

\[
P(D) \cdot \epsilon^1 \wedge \ldots \wedge \epsilon^k = \text{expression.}
\]
Giambelli’s problem has a solution

Theorem. *The natural evaluation map:*

\[
\begin{align*}
\text{ev}_{\epsilon_1 \wedge \ldots \wedge \epsilon_k} : \mathcal{A}^*(\Lambda M(p)) & \longrightarrow \Lambda^k M(p) \\
P(D) & \longmapsto P(D) \cdot \epsilon_1 \wedge \ldots \wedge \epsilon^k
\end{align*}
\]

is surjective.

Proof. Enough to prove that for each \(\epsilon^i_1 \wedge \ldots \wedge \epsilon^i_k \in \Lambda^k M(p) \) there exists a polynomial expression \(P(D) \) such that

\[
\epsilon^i_1 \wedge \ldots \wedge \epsilon^i_k = P(D) \cdot \epsilon_1 \wedge \ldots \wedge \epsilon^k.
\]

One then concludes using integration by parts. \(\blacksquare \)
Giambelli’s problem has a solution

Theorem. The natural evaluation map:

\[
\begin{align*}
\text{ev}_{\epsilon_1 \wedge \ldots \wedge \epsilon_k} & : \mathcal{A}^*(\wedge M(p)) \rightarrow \wedge^k M(p) \\
\text{ev}_{\epsilon_1 \wedge \ldots \wedge \epsilon_k} & : P(D) \rightarrow P(D) \cdot \epsilon^1 \wedge \ldots \wedge \epsilon^k
\end{align*}
\]

is surjective.

Proof. Enough to prove that for each \(\epsilon^{i_1} \wedge \ldots \wedge \epsilon^{i_k} \in \wedge^k M(p) \) there exists a polynomial expression \(P(D) \) such that

\[
\epsilon^{i_1} \wedge \ldots \wedge \epsilon^{i_k} = P(D) \cdot \epsilon^1 \wedge \ldots \wedge \epsilon^k.
\]

One then concludes using integration by parts.

For example:
Theorem. The natural evaluation map:

\[
\begin{align*}
\text{ev}_{\epsilon^1 \wedge \ldots \wedge \epsilon^k} : A^*(\Lambda M(p)) & \longrightarrow \Lambda^k M(p) \\
P(D) & \longmapsto P(D) \cdot \epsilon^1 \wedge \ldots \wedge \epsilon^k
\end{align*}
\]

is surjective.

Proof. Enough to prove that for each \(\epsilon^{i_1} \wedge \ldots \wedge \epsilon^{i_k} \in \Lambda^k M(p)\) there exists a polynomial expression \(P(D)\) such that

\[
\epsilon^{i_1} \wedge \ldots \wedge \epsilon^{i_k} = P(D) \cdot \epsilon^1 \wedge \ldots \wedge \epsilon^k.
\]

One then concludes using integration by parts. \(\blacksquare\)

For example:

Recall

In a previous slide we saw that, applying Leibniz rule:

\[
D_2(\epsilon^1 \wedge \epsilon^2) = \epsilon^1 \wedge \epsilon^4.
\]
Theorem. The natural evaluation map:

\[
\begin{aligned}
\text{ev}_{\epsilon^1 \wedge \ldots \wedge \epsilon^k} : & \quad \mathcal{A}^*(\wedge M(p)) \rightarrow \wedge^k M(p) \\
& \quad P(D) \quad \mapsto \quad P(D) \cdot \epsilon^1 \wedge \ldots \wedge \epsilon^k
\end{aligned}
\]

is surjective.

Proof. One must prove that for each \(\epsilon^{i_1} \wedge \ldots \wedge \epsilon^{i_k} \in \wedge^k M(p) \) there exists a polynomial expression \(P(D) \) such that

\[
\epsilon^{i_1} \wedge \ldots \wedge \epsilon^{i_k} = P(D) \cdot \epsilon^1 \wedge \ldots \wedge \epsilon^k.
\]

By integration by parts.

For example:
Theorem. The natural evaluation map:

\[
\begin{align*}
\text{ev}_{\epsilon^1 \wedge \ldots \wedge \epsilon^k} : \mathcal{A}^* (\wedge M(p)) & \longrightarrow \wedge^k M(p) \\
P(D) & \longrightarrow P(D) \cdot \epsilon^1 \wedge \ldots \wedge \epsilon^k
\end{align*}
\]

is surjective.

Proof. One must prove that for each \(\epsilon^{i_1} \wedge \ldots \wedge \epsilon^{i_k} \in \wedge^k M(p) \) there exists a polynomial expression \(P(D) \) such that

\[
\epsilon^{i_1} \wedge \ldots \wedge \epsilon^{i_k} = P(D) \cdot \epsilon^1 \wedge \ldots \wedge \epsilon^k.
\]

By integration by parts. \(\blacksquare \)

For example:

\[
\epsilon^2 \wedge \epsilon^3 =
\]
Theorem. The natural evaluation map:

\[
\begin{cases}
 \text{ev}_{\epsilon_1 \wedge \ldots \wedge \epsilon^k} : A^*(\bigwedge M(p)) \rightarrow \bigwedge^k M(p) \\
 P(D) \mapsto P(D) \cdot \epsilon^1 \wedge \ldots \wedge \epsilon^k
\end{cases}
\]

is surjective.

Proof. One must prove that for each \(\epsilon^{i_1} \wedge \ldots \wedge \epsilon^{i_k} \in \bigwedge^k M(p) \) there exists a polynomial expression \(P(D) \) such that

\[
\epsilon^{i_1} \wedge \ldots \wedge \epsilon^{i_k} = P(D) \cdot \epsilon^1 \wedge \ldots \wedge \epsilon^k.
\]

By integration by parts.

For example:

\[
\epsilon^2 \wedge \epsilon^3 = D_1 \epsilon^1 \wedge \epsilon^3 =
\]
Theorem. The natural evaluation map:

\[
\begin{align*}
\text{ev}_{\epsilon^1 \wedge \ldots \wedge \epsilon^k} &: A^*(\wedge M(p)) \longrightarrow \wedge^k M(p) \\
\end{align*}
\]

\[
P(D) \quad \longmapsto \quad P(D) \cdot \epsilon^1 \wedge \ldots \wedge \epsilon^k
\]

is surjective.

Proof. One must prove that for each \(\epsilon^{i_1} \wedge \ldots \wedge \epsilon^{i_k} \in \wedge^k M(p) \) there exists a polynomial expression \(P(D) \) such that

\[
\epsilon^{i_1} \wedge \ldots \wedge \epsilon^{i_k} = P(D) \cdot \epsilon^1 \wedge \ldots \wedge \epsilon^k.
\]

By integration by parts.

For example:

\[
\epsilon^2 \wedge \epsilon^3 = D_1 \epsilon^1 \wedge \epsilon^3 = D_1(\epsilon^1 \wedge \epsilon^3)
\]
Theorem. *The natural evaluation map:*

\[
\begin{align*}
ev_{\epsilon^1 \wedge \ldots \wedge \epsilon^k} & : A^*(\wedge M(p)) \longrightarrow \wedge^k M(p) \\
P(D) & \longmapsto P(D) \cdot \epsilon^1 \wedge \ldots \wedge \epsilon^k
\end{align*}
\]

is surjective.

Proof. One must prove that for each \(\epsilon^{i_1} \wedge \ldots \wedge \epsilon^{i_k} \in \wedge^k M(p)\) there exists a polynomial expression \(P(D)\) such that

\[
\epsilon^{i_1} \wedge \ldots \wedge \epsilon^{i_k} = P(D) \cdot \epsilon^1 \wedge \ldots \wedge \epsilon^k.
\]

By integration by parts.

For example:

\[
\epsilon^2 \wedge \epsilon^3 = D_1 \epsilon^1 \wedge \epsilon^3 = D_1(\epsilon^1 \wedge \epsilon^3) - \epsilon^1 \wedge \epsilon^4 =
\]
Theorem. The natural evaluation map:

\[
\begin{align*}
\text{ev}_{\epsilon^1 \wedge \ldots \wedge \epsilon^k} : A^*(\wedge M(p)) & \longrightarrow \wedge^k M(p) \\
P(D) & \longmapsto P(D) \cdot \epsilon^1 \wedge \ldots \wedge \epsilon^k
\end{align*}
\]

is surjective.

Proof. One must prove that for each \(\epsilon^{i_1} \wedge \ldots \wedge \epsilon^{i_k} \in \wedge^k M(p) \) there exists a polynomial expression \(P(D) \) such that

\[
\epsilon^{i_1} \wedge \ldots \wedge \epsilon^{i_k} = P(D) \cdot \epsilon^1 \wedge \ldots \wedge \epsilon^k.
\]

By integration by parts. \(\blacksquare \)

For example:

\[
\epsilon^2 \wedge \epsilon^3 = D_1 \epsilon^1 \wedge \epsilon^3 = D_1(\epsilon^1 \wedge \epsilon^3) - \epsilon^1 \wedge \epsilon^4 = D_1(D_1(\epsilon^1 \wedge \epsilon^2))
\]
Theorem. The natural evaluation map:

\[
\begin{aligned}
\text{ev}_{\epsilon^1 \wedge \ldots \wedge \epsilon^k} & : \mathcal{A}^*(\wedge M(p)) \rightarrow \wedge^k M(p) \\
P(D) & \mapsto P(D) \cdot \epsilon^1 \wedge \ldots \wedge \epsilon^k
\end{aligned}
\]

is surjective.

Proof. One must prove that for each \(\epsilon^{i_1} \wedge \ldots \wedge \epsilon^{i_k} \in \wedge^k M(p)\) there exists a polynomial expression \(P(D)\) such that

\[
\epsilon^{i_1} \wedge \ldots \wedge \epsilon^{i_k} = P(D) \cdot \epsilon^1 \wedge \ldots \wedge \epsilon^k.
\]

By integration by parts. \(\blacksquare\)

For example:

\[
\epsilon^2 \wedge \epsilon^3 = D_1 \epsilon^1 \wedge \epsilon^3 = D_1(\epsilon^1 \wedge \epsilon^3) - \epsilon^1 \wedge \epsilon^4 = D_1(D_1(\epsilon^1 \wedge \epsilon^2)) - D_2(\epsilon^1 \wedge \epsilon^2) =
\]

Letterio Gatto
Schubert Calculus on a Grassmann Algebra
Theorem. The natural evaluation map:

\[
\begin{align*}
\text{ev}_{\epsilon^1 \wedge \ldots \wedge \epsilon^k} : \mathcal{A}^*(\wedge M(p)) & \longrightarrow \wedge^k M(p) \\
P(D) & \longmapsto P(D) \cdot \epsilon^1 \wedge \ldots \wedge \epsilon^k
\end{align*}
\]

is surjective.

Proof. One must prove that for each \(\epsilon^{i_1} \wedge \ldots \wedge \epsilon^{i_k} \in \wedge^k M(p)\) there exists a polynomial expression \(P(D)\) such that

\[\epsilon^{i_1} \wedge \ldots \wedge \epsilon^{i_k} = P(D) \cdot \epsilon^1 \wedge \ldots \wedge \epsilon^k.\]

By integration by parts.

For example:

\[
\epsilon^2 \wedge \epsilon^3 = D_1 \epsilon^1 \wedge \epsilon^3 = D_1(\epsilon^1 \wedge \epsilon^3) - \epsilon^1 \wedge \epsilon^4 = D_1(D_1(\epsilon^1 \wedge \epsilon^2)) - D_2(\epsilon^1 \wedge \epsilon^2) =
\]

\[= (D_1^2 - D_2) \cdot \epsilon^1 \wedge \epsilon^2 =
\]
Theorem. The natural evaluation map:

\[
\begin{aligned}
 \text{ev}_{\epsilon_1 \wedge \ldots \wedge \epsilon_k} : & \quad A^*(\wedge M(p)) \longrightarrow \wedge^k M(p) \\

 P(D) & \longmapsto P(D) \cdot \epsilon^1 \wedge \ldots \wedge \epsilon^k
\end{aligned}
\]

is surjective.

Proof. One must prove that for each \(\epsilon^{i_1} \wedge \ldots \wedge \epsilon^{i_k} \in \wedge^k M(p) \) there exists a polynomial expression \(P(D) \) such that

\[
\epsilon^{i_1} \wedge \ldots \wedge \epsilon^{i_k} = P(D) \cdot \epsilon^1 \wedge \ldots \wedge \epsilon^k.
\]

By integration by parts. \(\square \)

For example:

\[
\epsilon^2 \wedge \epsilon^3 = D_1 \epsilon^1 \wedge \epsilon^3 = D_1 (\epsilon^1 \wedge \epsilon^3) - \epsilon^4 = D_1 (D_1 (\epsilon^1 \wedge \epsilon^2)) - D_2 (\epsilon^1 \wedge \epsilon^2) = (D_1^2 - D_2) \cdot \epsilon^1 \wedge \epsilon^2 = D_1 D_2 - D_0 D_1 \epsilon^1 \wedge \epsilon^2.
\]
Computing $A^* (\wedge^k M(p))$
Computing $A^*(\wedge^k M(p))$

Hence:
Computing $A^*(\bigwedge^k M(p))$

Hence:

$$A^*(\bigwedge^k M(p)) := \frac{A^*(\bigwedge M(p))}{\ker(\rho_k)} = \frac{A^*(\bigwedge M(p))}{\ker(e_{V}^{1 \wedge \ldots \wedge k})}$$
Computing $\mathcal{A}^*(\bigwedge^k M(p))$

Hence:

$$\mathcal{A}^*(\bigwedge^k M(p)) := \frac{\mathcal{A}^*(\bigwedge M(p))}{\ker(\rho_k)} = \frac{\mathcal{A}^*(\bigwedge^k M(p))}{\ker(e_1 \wedge \ldots \wedge e^k)}$$

The map:
Computing $\mathcal{A}^*(\bigwedge^k M(p))$

Hence:

$$\mathcal{A}^*(\bigwedge^k M(p)) := \frac{\mathcal{A}^*(\bigwedge M(p))}{\ker(\rho_k)} = \frac{\mathcal{A}^*(\bigwedge M(p))}{\ker(\ev_{\epsilon^1 \wedge \ldots \wedge \epsilon^k})}$$

The map:

$$\left\{ \begin{array}{l}
\Pi_k : \mathcal{A}^*(\bigwedge^k M(p)) \longrightarrow \bigwedge^k M(p) \\
\rho_k(P(D)) \mapsto P(D)\epsilon^1 \wedge \ldots \wedge \epsilon^k
\end{array} \right.$$
Computing $\mathcal{A}^*(\bigwedge^k M(p))$

Hence:

$$\mathcal{A}^*(\bigwedge^k M(p)) := \frac{\mathcal{A}^*(\bigwedge M(p))}{\ker(\rho_k)} = \frac{\mathcal{A}^*(\bigwedge M(p))}{\ker(eV \epsilon^1 \wedge \ldots \wedge \epsilon^k)}$$

The map:

$$\left\{ \begin{array}{ccc} \Pi_k : & \mathcal{A}^*(\bigwedge^k M(p)) & \longrightarrow & \bigwedge^k M(p) \\ \rho_k(P(D)) & \mapsto & P(D)\epsilon^1 \wedge \ldots \wedge \epsilon^k \end{array} \right\}$$

is said to be *Poincaré Isomorphism*
Computing $\mathcal{A}^*(\bigwedge^k M(p))$

Hence:

$$\mathcal{A}^*(\bigwedge^k M(p)) := \frac{\mathcal{A}^*(\bigwedge M(p))}{\ker(\rho_k)} = \frac{\mathcal{A}^*(\bigwedge M(p))}{\ker(\text{ev}_{\epsilon^1 \wedge \ldots \wedge \epsilon^k})}$$

The map:

$$\begin{cases}
\Pi_k : \mathcal{A}^*(\bigwedge^k M(p)) \rightarrow \bigwedge^k M(p) \\
\rho_k(P(D)) \mapsto P(D)\epsilon^1 \wedge \ldots \wedge \epsilon^k
\end{cases}$$

is said to be \textit{Poincaré Isomorphism}

In a sense:

"$\mathcal{A}^*(\bigwedge^k M(p)) = \bigwedge^k \mathcal{A}^*(M(p))$"

Letterio Gatto

Schubert Calculus on a Grassmann Algebra
Let \(E \to Y \) be a vector bundle of rank \(n \); furthermore, let:

\[
A := A^\ast(Y)
\]

and

\[
p = X_n - c_1(E) X_{n-1} + \ldots + c_n(E)
\]

Construct \(\mathbb{k} M(p) \). It turns out that (easy):

\[
\mathbb{k} M(p) = M(p) \sim A^\ast(P(E))
\]

which is an \(A \)-module freely generated by \(i := \xi_i - 1 \cap [P(E)] \), where \(\xi = c_1(O_{P(E)}(E)(-1)) \).
Intersection Theory on Grassmann Bundles

Let

$$E \rightarrow Y$$ be a vector bundle of rank n;

Furthermore, let:

$$A := A^* (Y)$$ and

$$p = X_{n-1} - c_1(E) X_{n-1} + \ldots + c_n(E)$$

Construct

$$k M(p)$$ before

It turns out that (easy):

$$1 M(p) = M(p) \sim A^* (P(E))$$

which is an A-module freely generated by

$$\xi_i := \xi_i - 1 \cap [P(E)]$$, where

$$\xi = c_1(O_P(E)(-1))$$
Let \(E \rightarrow Y \)
Intersection Theory on Grassmann Bundles

Let \(E \rightarrow Y \) be a vector bundle of rank \(n \);

Furthermore, let:

\[
\begin{align*}
A &= A^* (Y) \\
p &= X^{n-1} c_1(E) X^{n-2} + \ldots + c_n(E)
\end{align*}
\]

Construct \(\text{M}^k(p) \) before it turns out that (easy):

\[
\text{M}^1(p) = \text{M}(p) \sim A^* (P(E))
\]

which is an \(A \)-module freely generated by \(\xi_i = \xi_{i-1} \cap [P(E)] \), where

\[
\xi = c_1(O_{P(E)}(-1))
\]
Let $E \to Y$ be a vector bundle of rank n;

Furthermore, let:

$$A := A^\ast(Y)$$

It turns out that (easy):

$$\text{ext}^1 M(p) = M(p) = A^\ast(P(E))$$

which is an A-module freely generated by

$$i := \xi_i - 1 \cap [P(E)]$$

where

$$\xi = c_1(O_{P(E)}(-1))$$
Let $E \rightarrow Y$ be a vector bundle of rank n;

Furthermore, let:

$$A := A^*(Y) \quad \text{and}$$
Let \(E \rightarrow Y \) be a vector bundle of rank \(n \);

Furthermore, let:

\[
A := A^*(Y) \quad \text{and} \quad p = X^n - c_1(E)X^{n-1} + \ldots + c_n(E)
\]
Intersection Theory on Grassmann Bundles

Let \(E \rightarrow Y \) be a vector bundle of rank \(n \);

Furthermore, let:

\[
A := A^*(Y) \quad \text{and} \quad p = X^n - c_1(E)X^{n-1} + \ldots + c_n(E)
\]

Construct \(\bigwedge^k M(p) \) as before
Let $E \to Y$ be a vector bundle of rank n;

Furthermore, let:

$$A := A^*(Y) \quad \text{and} \quad p = X^n - c_1(E)X^{n-1} + \ldots + c_n(E)$$

Construct $\wedge^k M(p)$ as before

$$M := XA[X], \quad M(p) := M/pM$$
Intersection Theory on Grassmann Bundles

Let $E \to Y$ be a vector bundle of rank n;

Furthermore, let:

$$A := A^*(Y) \quad \text{and} \quad p = x^n - c_1(E)x^{n-1} + \ldots + c_n(E)$$

Construct $\wedge^k M(p)$ as before
Let $E \rightarrow Y$ be a vector bundle of rank n;

Furthermore, let:

$$A := A^*(Y) \quad \text{and} \quad p = X^n - c_1(E)X^{n-1} + \ldots + c_n(E)$$

Construct $\bigwedge^k M(p)$ as before

It turns out that
Let $E \rightarrow Y$ be a vector bundle of rank n;

Furthermore, let:

$$A := A^*(Y) \quad \text{and} \quad p = X^n - c_1(E)X^{n-1} + \ldots + c_n(E)$$

Construct $\bigwedge^k M(p)$ as before

It turns out that (easy):
Let $E \rightarrow Y$ be a vector bundle of rank n;

Furthermore, let:

$$A := A^*(Y) \quad \text{and} \quad p = X^n - c_1(E)X^{n-1} + \ldots + c_n(E)$$

Construct $\bigwedge^k M(p)$ as before

It turns out that (easy):

$$\bigwedge^1 M(p) = M(p) \cong A_*(\mathbb{P}(E))$$
Let $E \to Y$ be a vector bundle of rank n;

Furthermore, let:

$$A := A^*(Y) \quad \text{and} \quad p = X^n - c_1(E)X^{n-1} + \ldots + c_n(E)$$

Construct $\bigwedge^k M(p)$ as before

It turns out that (easy):

$$\bigwedge^1 M(p) = M(p) \cong A_*(\mathbb{P}(E))$$

which is an A-module freely generated by $e^i := \xi^{i-1} \cap [\mathbb{P}(E)]$, where

$$\xi = c_1(\mathcal{O}_{\mathbb{P}(E)}(-1))$$
The Main Theorem (Laksov & Thorup, 2006)

The following diagram commutes.

\[
\begin{align*}
\ast & \mid \ast \mid \ast \\
A & \otimes & \ast \\
G(k, E) & \cap & \ast \\
\iota_k & \otimes & \delta_{-1} \\
\mid & \mid & \mid \\
\ast & \mid \ast \\
(\ast \setminus k \mathcal{M}(\mathcal{P})) & \otimes & \ast \\
\mathcal{M}(\mathcal{P}) & \rightarrow & \mathcal{M}(\mathcal{P})
\end{align*}
\]
The Main Theorem (Laksov & Thorup, 2006)

\[A^* \left(G(k, E) \right) \otimes A^* \left(G(k, E) \right) \cap \rightarrow A^* \left(G(k, E) \right) \]

\[\iota_k \otimes \delta^{-1} \]

\[\delta_k \]

\[A^* \left(\pi \left(k M(p) \right) \right) \otimes \pi \left(k M(p) \right) \rightarrow \pi \left(k M(p) \right) \]

commutes.

\[\iota_k \left(P(\sigma) \right) = P(D) \]

\[\delta_k \left(\pi_1 \wedge \ldots \wedge \pi_k \right) = \Delta_{\pi_1, \ldots, \pi_k} \]

\[\cap \left[G(k, E) \right] \]
The following diagram

\[
\begin{array}{c}
A^\ast (G(k,E)) \otimes A^\ast (G(k,E)) \cap -\rightarrow A^\ast (G(k,E)) \\
\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \\
A^\ast (\mathbb{M}(p)) \otimes \mathbb{M}(p) \rightarrow \mathbb{M}(p)
\end{array}
\]

where \(\iota_k(P(\sigma)) = P(D)\) and \(\delta_k(\wedge \ldots \wedge \wedge i_1 \ldots i_k) = \Delta_{i_1 \ldots i_k}(\sigma) \cap [G(k,E)]\).
The Main Theorem (Laksov & Thorup, 2006)

The following diagram

\[
\begin{align*}
A^*(G(k, E)) \otimes A^*(G(k, E)) & \longrightarrow A^*(G(k, E)) \\
\iota_k \otimes \delta_k^{-1} & \downarrow \\
A^*(\bigwedge^k M(p)) \otimes \bigwedge^k M(p) & \longrightarrow \bigwedge^k M(p)
\end{align*}
\]
The following diagram

\[
\begin{array}{ccc}
A^\ast(G(k, E)) \otimes A^\ast(G(k, E)) & \xrightarrow{\cap} & A^\ast(G(k, E)) \\
\downarrow \iota_k \otimes \delta_k^{-1} & & \uparrow \delta_k \\
A^\ast(\bigwedge^k M(p)) \otimes \bigwedge^k M(p) & \rightarrow & \bigwedge^k M(p)
\end{array}
\]

commutes.
The following diagram

\[A^*(G(k, E)) \otimes A^*(G(k, E)) \rightarrow A^*(G(k, E)) \]

\[\iota_k \otimes \delta_k^{-1} \downarrow \quad \delta_k \uparrow \]

\[A^*(\bigwedge^k M(p)) \otimes \bigwedge^k M(p) \rightarrow \bigwedge^k M(p) \]

commutes.

(\text{where} \quad \nu_k(P(\sigma)) = P(D)
\text{and} \quad \delta_k(\epsilon_1 \wedge \ldots \wedge \epsilon_k) = \Delta_{i_1, \ldots, i_k}(\sigma) \cap [G(k, E)])
The Main Theorem (Laksov & Thorup, 2006)

The symmetric structure of $\wedge^k A[X]$

Let $S := A[X_1, \ldots, X_k]^{sym}$. Then $\otimes^k A[X] \rightarrow \wedge^k A[X]$ is S-linear

The following diagram

$$
\begin{align*}
A^*(G(k, E)) \otimes A^*(G(k, E)) & \rightarrow A^*(G(k, E)) \\
\delta_k \otimes \delta_k^{-1} & \downarrow \quad \delta_k \uparrow \\
A^*(\wedge^k M(p)) \otimes \wedge^k M(p) & \rightarrow \wedge^k M(p)
\end{align*}
$$

commutes.

where $\nu_k(P(\sigma)) = P(D)$

and $\delta_k(\epsilon^{i_1} \wedge \ldots \wedge \epsilon^{i_k}) = \Delta_{i_1, \ldots, i_k}(\sigma) \cap [G(k, E)]$
Newton’s Binomial Formulas

What do we gain by our dictionary?

Working on the Exterior Algebra rather than on a single exterior power, we inherit Newton's type binomial formulas!

Letterio Gatto

Schubert Calculus on a Grassmann Algebra
Newton’s Binomial Formulas

What do we gain by our dictionary?
Newton’s Binomial Formulas

What do we gain by our dictionary?

Working on the **Exterior Algebra** rather than on a single exterior power, we inherit

Letterio Gatto

Schubert Calculus on a Grassmann Algebra
Newton’s Binomial Formulas

What do we gain by our dictionary?

Working on the **Exterior Algebra** rather than on a single exterior power, we inherit

Newton’s type binomial formulas!
Newton’s Binomial Formulas

What do we gain by our dictionary?

Working on the **Exterior Algebra** rather than on a single exterior power, we inherit

Newton’s type binomial formulas!

see

Letterio Gatto

Schubert Calculus on a Grassmann Algebra
Newton’s Binomial Formulas

What do we gain by our dictionary?

Working on the **Exterior Algebra** rather than on a single exterior power, we inherit

Newton’s type binomial formulas!

see

1st Newton’s formulas \((a + b)^n\)

The first is gotten via a simple induction by iterating

\[
D_1(\alpha \wedge \beta) = D_1\alpha \wedge \beta + \alpha \wedge D_1\beta
\]

\[
D_m(\alpha \wedge \beta) = \sum_{j=0}^{m} D_j\alpha \wedge D_{m-j}\beta
\]

holding for each \(\alpha, \beta \in M(p)\) and each \(m \geq 1\).
The first is gotten via a simple induction by iterating

\[D_1(\alpha \wedge \beta) = D_1\alpha \wedge \beta + \alpha \wedge D_1\beta. \]
The first is gotten via a simple induction by iterating

\[D_1(\alpha \land \beta) = D_1\alpha \land \beta + \alpha \land D_1\beta. \]

\[D_1^m(\alpha \land \beta) = \sum_{j=0}^{m} \binom{m}{j} D_1^j\alpha \land D_1^{m-j}\beta \quad (1) \]
The first is gotten via a simple induction by iterating

\[D_1(\alpha \wedge \beta) = D_1 \alpha \wedge \beta + \alpha \wedge D_1 \beta. \]

\[
D_1^m(\alpha \wedge \beta) = \sum_{j=0}^{m} \binom{m}{j} D_1^j \alpha \wedge D_1^{m-j} \beta \quad (1)
\]

holding for each \(\alpha, \beta \in \wedge M(p) \) and each \(m \geq 1 \)
Similarly, iterating
\[D_h (\alpha \wedge \cdot i) = D_h \alpha \wedge \cdot i + D_h \alpha \wedge \cdot (i + 1), \]
one gets a second Newton's type formula (Cordovez):
\[D_m h (\alpha \wedge \cdot i) = \sum_{j=0}^m D_j h - 1 (D_m - j h \alpha \wedge \cdot i + j) \] (2)
holding for each \(\alpha \in \mathfrak{M}(p) \) and each \(m \geq 0 \) (when \(h = 1 \) one gets precisely formula (1) for \(\beta = \cdot i \)).

Claim: formula (2) is unspeakable in the classical formulation of Schubert Calculus.

Challenge: disprove the claim!
Similarly, iterating $D_h(\alpha \wedge \epsilon^i) = D_h\alpha \wedge \epsilon^i + D_{h-1}(\alpha \wedge \epsilon^{i+1})$,

Claim: formula (2) is unspeakable in the classical formulation of Schubert Calculus

Challenge: disprove the claim!
Similarly, iterating $D_h(\alpha \wedge \epsilon^i) = D_h \alpha \wedge \epsilon^i + D_{h-1}(\alpha \wedge \epsilon^{i+1})$,

Integration by parts

\[
D_h \alpha \wedge \epsilon^i = D_h(\alpha \wedge \epsilon^i) - D_{h-1}(\alpha \wedge \epsilon^{i+1})
\]
Similarly, iterating $D_h(\alpha \wedge \epsilon^i) = D_h\alpha \wedge \epsilon^i + D_{h-1}(\alpha \wedge \epsilon^{i+1})$,
Similarly, iterating $D_h(\alpha \wedge \epsilon^i) = D_h\alpha \wedge \epsilon^i + D_{h-1}(\alpha \wedge \epsilon^{i+1})$, one gets a second Newton’s type formula (Cordovez):
Similarly, iterating $D_h(\alpha \wedge \epsilon^i) = D_h\alpha \wedge \epsilon^i + D_{h-1}(\alpha \wedge \epsilon^{i+1})$, one gets a second Newton’s type formula (Cordovez):

$$D^m_h(\alpha \wedge \epsilon^i) = \sum_{j=0}^{m} \binom{m}{j} D^j_{h-1}(D^{m-j}_h \alpha \wedge \epsilon^{i+j})$$ (2)
Similarly, iterating $D_h(\alpha \wedge \epsilon^i) = D_h\alpha \wedge \epsilon^i + D_{h-1}(\alpha \wedge \epsilon^{i+1})$, one gets a second Newton’s type formula (Cordovez):

$$D_h^m(\alpha \wedge \epsilon^i) = \sum_{j=0}^{m} \binom{m}{j} D_{h-1}^j(D_h^{m-j}\alpha \wedge \epsilon^{i+j}) \quad (2)$$

holding for each $\alpha \in \wedge M(p)$ and each $h, m \geq 0$
Similarly, iterating $D_h(\alpha \wedge \epsilon^i) = D_h\alpha \wedge \epsilon^i + D_{h-1}(\alpha \wedge \epsilon^{i+1})$, one gets a second Newton’s type formula (Cordovez):

$$D_h^m(\alpha \wedge \epsilon^i) = \sum_{j=0}^{m} \binom{m}{j} D_{h-1}^j(D_h^{m-j}\alpha \wedge \epsilon^{i+j})$$

(2)

holding for each $\alpha \in \wedge M(p)$ and each $h, m \geq 0$

(when $h = 1$ one gets precisely formula (1) for $\beta = \epsilon^i$)
Similarly, iterating \(D_h(\alpha \wedge \epsilon^i) = D_h\alpha \wedge \epsilon^i + D_{h-1}(\alpha \wedge \epsilon^{i+1}) \), one gets a second Newton’s type formula (Cordovez):

\[
D^m_h(\alpha \wedge \epsilon^i) = \sum_{j=0}^m \binom{m}{j} D^j_{h-1}(D^{m-j}_h \alpha \wedge \epsilon^{i+j})
\]

(2)

holding for each \(\alpha \in \bigwedge M(p) \) and each \(h, m \geq 0 \)

(when \(h = 1 \) one gets precisely formula (1) for \(\beta = \epsilon^i \))

Claim:

formula (2) is unspeakable in the classical formulation of Schubert Calculus
Similarly, iterating $D_h(\alpha \wedge \epsilon^i) = D_h \alpha \wedge \epsilon^i + D_{h-1}(\alpha \wedge \epsilon^{i+1})$, one gets a second Newton’s type formula (Cordovez):

$$D_h^m(\alpha \wedge \epsilon^i) = \sum_{j=0}^{m} \binom{m}{j} D_{h-1}^j(D_h^{m-j} \alpha \wedge \epsilon^{i+j})$$

(2)

holding for each $\alpha \in \wedge M(p)$ and each $h, m \geq 0$

(when $h = 1$ one gets precisely formula (1) for $\beta = \epsilon^i$)

Claim:

formula (2) is unspeakable in the classical formulation of Schubert Calculus

Challenge:

disprove the claim!
Schubert Calculus on Grassmann Varieties.

From now on let $A = Z$ and $p = X^n$. Then $M_n := M(p^i)$ is the Z-module of rank n generated by (π_1, \ldots, π_n). In this case $\pi_j = 0$ if $j > n$. The weight of $\pi_1 \wedge \ldots \wedge \pi_k$ is $(i_1 - 1) + \ldots + (i_k - k)$. Then:

$k \subseteq M_n \mapsto (k \subseteq M_n)$

The fundamental element $g_k = \pi_1 \wedge \ldots \wedge \pi_k$ is the unique of weight 0 while $\pi_k, n = \pi_n - k + 1 \wedge \ldots \wedge \pi_n$ is the unique of weight $k(n - k)$ (the maximum possible).
From now on let $A = \mathbb{Z}$ and $p = X^n$.

The weight of $\pi_1 \wedge \ldots \wedge \pi_k$ is $(\pi_1 - 1) + \ldots + (\pi_k - k)$. Then:

$$
\pi_k \in M_n = \pi_k (M_n)
$$

The fundamental element $g_k = \pi_1 \wedge \ldots \wedge \pi_k$ is the unique of weight 0 while $\pi_{n,k} \wedge \ldots \wedge \pi_n$ is the unique of weight $k(n-k)$ (the maximum possible).
From now on let $A = \mathbb{Z}$ and $p = X^n$.

Then $M_n := M(p)$ is a free \mathbb{Z}-module of rank n generated by $(\epsilon^1, \ldots, \epsilon^n)$.
From now on let $A = \mathbb{Z}$ and $p = X^n$.

Then $M_n := M(p)$ is a free \mathbb{Z}-module of rank n generated by $(\varepsilon^1, \ldots, \varepsilon^n)$.

In this case $\varepsilon^j = 0$ if $j > n$.
From now on let $A = \mathbb{Z}$ and $p = X^n$.

Then $M_n := M(p)$ is a free \mathbb{Z}-module of rank n generated by $(\epsilon^1, \ldots, \epsilon^n)$. In this case $\epsilon^j = 0$ if $j > n$.

The weight of $\epsilon^{i_1} \wedge \ldots \wedge \epsilon^{i_k}$ is $(i_1 - 1) + \ldots + (i_k - k)$. Then:

$$\bigwedge^k M_n = \bigoplus (\bigwedge^k M_n)_w$$
From now on let $A = \mathbb{Z}$ and $p = X^n$.

Then $M_n := M(p)$ is a free \mathbb{Z}-module of rank n generated by $(\epsilon^1, \ldots, \epsilon^n)$.

In this case $\epsilon^j = 0$ if $j > n$.

The weight of $\epsilon^{i_1} \wedge \ldots \wedge \epsilon^{i_k}$ is $(i_1 - 1) + \ldots + (i_k - k)$. Then:

$$\bigwedge^k M_n = \bigoplus \left(\bigwedge^k M_n \right)_w$$

The fundamental element

$$g_k = \epsilon^1 \wedge \ldots \wedge \epsilon^k$$

is the unique of weight 0 while

$$\pi_{k,n} = \epsilon^{n-k+1} \wedge \ldots \wedge \epsilon^n$$

is the unique of weight $k(n - k)$ (the maximum possible).
One has:

\[D^m h (k \neq M_n) w \subseteq (k \neq M_n) w + m h \]

i.e., \(D^h \) is homogeneous of degree \(h \).

In particular

\[D^k (n - k) \frac{1}{1} (k \neq M_n) 0 \sim = (k \neq M_n) k (n - k) \]

i.e.

\[D^k (n - k) \frac{1}{1} \wedge ... \wedge \frac{1}{k} = d_k, n \cdot \frac{1}{n + 1} = k \wedge ... \wedge \frac{1}{k} \]
One has:

$$D^m_h \subseteq (k \wedge M^n)_{w} + mh$$

i.e., D_h is homogeneous of degree h.

In particular

$$D^k_{(n-k)}_{1} \sim (k \wedge M^n)_{k(n-k)}$$

i.e.

$$D^k_{(n-k)}_{1} \wedge ... \wedge k = d^k_{n \cdot n+1-k}$$
One has:

\[D_h^m (\bigwedge^k M_n)_w \subseteq (\bigwedge^k M_n)_{w+mh} \]

i.e., \(D_h \) is homogeneous of degree \(h \).
One has:

\[D_h^m (\bigwedge^k M_n)_w \subseteq (\bigwedge^k M_n)_{w+mh} \]

i.e., \(D_h \) is homogeneous of degree \(h \).

In particular

\[D_1^{k(n-k)} (\bigwedge^n M_n)_0 \cong (\bigwedge^k M_n)_{k(n-k)} \]
One has:

\[D_h^m (\bigwedge^k M_n)_w \subseteq (\bigwedge^k M_n)_{w+mh} \]

i.e., \(D_h \) is homogeneous of degree \(h \).

In particular

\[D_{k(n-k)}^k (\bigwedge^m M_n)_0 \cong (\bigwedge^k M_n)_{k(n-k)} \]

i.e.
One has:

\[D_h^m(\bigwedge M_n)_w \subseteq (\bigwedge M_n)_{w+mh} \]

i.e., \(D_h \) is homogeneous of degree \(h \).

In particular

\[D_1^{k(n-k)}(\bigwedge M_n)_0 \cong (\bigwedge M_n)_{k(n-k)} \]

i.e.

\[D_1^{k(n-k)} \epsilon^1 \wedge \ldots \wedge \epsilon^k = d_{k,n} \cdot \epsilon^{n+1-k} \wedge \ldots \wedge \epsilon^n \]
Define: \(i_1 \wedge \cdots \wedge i_k = \begin{cases} 0 & \text{if } (i_1, \ldots, i_k) \text{ is an even permutation of } (n-k+1, \ldots, n) \\ -1 & \text{if } (i_1, \ldots, i_k) \text{ is an odd permutation of } (n-k+1, \ldots, n) \\ \end{cases} \)

Extend \(\text{by } \mathbb{Z} \)-linearity, getting \(\pi_k : M_n \to \mathbb{Z} \)

The Main Theorem implies that

\[
G(k, n) P(\sigma) \cap \Omega i_1 \wedge \cdots \wedge i_k = \pi_k(D) \text{ if } (i_1, \ldots, i_k) \text{ is an even permutation of } (n-k+1, \ldots, n)
\]

Letterio Gatto

Schubert Calculus on a Grassmann Algebra
Define:

\[n \wedge \ldots \wedge i_k = \begin{cases}
1 & \text{if } (i_1, \ldots, i_k) \text{ is an even permutation of } (n - k + 1, \ldots, n) \\
-1 & \text{if } (i_1, \ldots, i_k) \text{ is an odd permutation of } (n - k + 1, \ldots, n) \\
0 & \text{otherwise}
\end{cases} \]
Define:

\[\int_n \epsilon^{i_1} \wedge \ldots \wedge \epsilon^{i_k} = \]

\[= \begin{cases}
1 & \text{if } (i_1, \ldots, i_k) \text{ is an even permutation of } (n - k + 1, \ldots, n) \\
-1 & \text{if } (i_1, \ldots, i_k) \text{ is an odd permutation of } (n - k + 1, \ldots, n) \\
0 & \text{otherwise}
\end{cases} \]

Extend \(\int \) by \(\mathbb{Z} \)-linearity, getting \(\int : \bigwedge^k M_n \to \mathbb{Z} \)
A piece of Notation

Define:

\[
\int_n^{e_{i_1} \wedge \ldots \wedge e_{i_k} =}
\]

\[
= \begin{cases}
1 & \text{if } (i_1, \ldots, i_k) \text{ is an even permutation of } (n - k + 1, \ldots, n) \\
-1 & \text{if } (i_1, \ldots, i_k) \text{ is an odd permutation of } (n - k + 1, \ldots, n) \\
0 & \text{otherwise}
\end{cases}
\]

Extend \(\int \) by \(\mathbb{Z} \)-linearity, getting \(\int : \wedge^k M_n \to \mathbb{Z} \)

The Main Theorem
A piece of Notation

Define:
\[\varepsilon_{i_1} \wedge \ldots \wedge \varepsilon_{i_k} = \]
\[= \begin{cases}
1 & \text{if } (i_1, \ldots, i_k) \text{ is an even permutation of } (n-k+1, \ldots, n) \\
-1 & \text{if } (i_1, \ldots, i_k) \text{ is an odd permutation of } (n-k+1, \ldots, n) \\
0 & \text{otherwise}
\end{cases} \]

Extend \(\varepsilon \) by \(\mathbb{Z} \)-linearity, getting \(\varepsilon : \bigwedge^k M_n \rightarrow \mathbb{Z} \)

The Main Theorem

\[A^*(G(k, E)) \otimes A^*(G(k, E)) \xrightarrow{\cap} A^*(G(k, E)) \]
\[\downarrow \quad \delta_k^{-1} \quad \delta_k \]
\[A^*(\bigwedge^k M(p)) \otimes \bigwedge^k M(p) \rightarrow \bigwedge^k M(p) \]
A piece of Notation

Define:

\[\int_n \epsilon^{i_1} \wedge \ldots \wedge \epsilon^{i_k} = \]

\[= \begin{cases}
1 & \text{if } (i_1, \ldots, i_k) \text{ is an even permutation of } (n - k + 1, \ldots, n) \\
-1 & \text{if } (i_1, \ldots, i_k) \text{ is an odd permutation of } (n - k + 1, \ldots, n) \\
0 & \text{otherwise}
\end{cases} \]

Extend \(\int \) by \(\mathbb{Z} \)-linearity, getting \(\int : \wedge^k M_n \to \mathbb{Z} \)

The Main Theorem
A piece of Notation

Define:

\[\int_{n}^{\epsilon_{1} \land \ldots \land \epsilon_{k}} = \]

\[
= \begin{cases}
1 & \text{if } (i_1, \ldots, i_k) \text{ is an even permutation of } (n - k + 1, \ldots, n) \\
-1 & \text{if } (i_1, \ldots, i_k) \text{ is an odd permutation of } (n - k + 1, \ldots, n) \\
0 & \text{otherwise}
\end{cases}
\]

Extend \(\int \) by \(\mathbb{Z} \)-linearity, getting \(\int : \wedge^k M_n \to \mathbb{Z} \)

The Main Theorem implies that

\[\int_{G(k,n)} P(\sigma) \cap \Omega_{i_1 \ldots i_k} = \int P(D) \epsilon_{i_1} \land \ldots \land \epsilon_{i_k} \]
Let us compute the degree of $G(2, 2+n)$ in the Plücker embedding. It is

$$G(2, n+2) \sigma_2 n_1 \cap [G(2, n+2)] = n+2 D_2 n_1$$

It is the coefficient of $\pi_2, n+2 := n+1 \wedge \pi_2 n+2$ in the expansion of $D_2 n_1 \pi_1 \wedge \pi_2$.

Notice that:

$\text{wt}(\pi_1 + n \wedge \pi_2 + n) = 2n, \text{deg}(D_2 n_1) = 2n,$

$\text{wt}(\pi_1 \wedge \pi_2) = 0$ and

$\text{rk}_Z(\pi_2 M n + 2) = 2n_1.$
Let us compute the degree of $G(2, 2 + n)$ in the Plücker embedding.
Let us compute the degree of \(G(2, 2 + n) \) in the Plücker embedding. It is

\[
\int_{G(2,n+2)} \sigma_1^{2n} \cap [G(2, n + 2)] = \int_{n+2} D_1^{2n} \epsilon^1 \wedge \epsilon^2
\]
Let us compute the degree of $G(2, 2 + n)$ in the Plücker embedding. It is

$$
\int_{G(2,n+2)} \sigma_1^{2n} \cap [G(2, n + 2)] = \int_{n+2} D_1^{2n} \epsilon^1 \wedge \epsilon^2
$$

It is the coefficient of $\pi_{2,n+2} := \epsilon^{n+1} \wedge \epsilon^{n+2}$ in the expansion of $D_1^{2n} \epsilon^1 \wedge \epsilon^2$.
Let us compute the degree of $G(2, 2 + n)$ in the Plücker embedding. It is

$$\int_{G(2, n+2)} \sigma_1^{2n} \cap [G(2, n + 2)] = \int_{n+2} D_1^{2n} \epsilon^1 \wedge \epsilon^2$$

It is the coefficient of $\pi_{2,n+2} := \epsilon^{n+1} \wedge \epsilon^{n+2}$ in the expansion of $D_1^{2n} \epsilon^1 \wedge \epsilon^2$

Notice that:

$$\text{wt}(\epsilon^{1+n} \wedge \epsilon^{2+n}) = 2n, \quad \text{deg}(D_1^{2n}) = 2n, \quad \text{wt}(\epsilon^1 \wedge \epsilon^2) = 0$$

and

$$\text{rk}_\mathbb{Z}(\wedge^2 M_{n+2})_{2n} = 1.$$
Using the 1st Newton formula:
\[D^2 n^1 \wedge n^2 = \sum_{j=0}^{n^j} D^2 n^j \]

In the sum we get contributions only from \(j = n \) and \(j = n + 1 \):
\[D^2 n^1 \wedge n^2 = \sum_{j=0}^{n^j} 1 \]
\[+ \sum_{j=0}^{n^j} 2 + 2n - j \]
\[= \sum_{j=0}^{n^j} \frac{n!}{n!(n+1)!} \]

Letterio Gatto
Schubert Calculus on a Grassmann Algebra
Using the 1st Newton formula:
Using the 1st Newton formula:

\[
D_1^m(\alpha \wedge \beta) = \sum_{j=0}^{m} \binom{m}{j} D_1^j \alpha \wedge D_1^{m-j} \beta
\]
Using the 1st Newton formula:
Using the 1st Newton formula:

\[D_{1}^{2n} \epsilon^1 \wedge \epsilon^2 = \]
Using the 1st Newton formula:

\[D_1^{2n} \epsilon^1 \land \epsilon^2 = \sum_{j=0}^{2n} \binom{2n}{j} D_1^j \epsilon^1 \land D_1^{2n-j} \epsilon^2 = \sum_{j=0}^{2n} \binom{2n}{j} \epsilon^{1+j} \land \epsilon^{2+2n-j} \]
Using the 1st Newton formula:

\[D_1^{2n} \epsilon^1 \wedge \epsilon^2 = \sum_{j=0}^{2n} \binom{2n}{j} D_1^j \epsilon^1 \wedge D_1^{2n-j} \epsilon^2 = \sum_{j=0}^{2n} \binom{2n}{j} \epsilon^{1+j} \wedge \epsilon^{2+2n-j} \]

In the sum we get contributions only from \(j = n \) and \(j = n + 1 \):

\[D_1^{2n} \epsilon^1 \wedge \epsilon^2 = \binom{2n}{n} \epsilon^{1+n} \wedge \epsilon^{2+n} + \binom{2n}{n+1} \epsilon^{2+n} \wedge \epsilon^{1+n} \]
Using the 1st Newton formula:

\[D_1^{2n} \epsilon^1 \wedge \epsilon^2 = \sum_{j=0}^{2n} \binom{2n}{j} D_1^j \epsilon^1 \wedge D_1^{2n-j} \epsilon^2 = \sum_{j=0}^{2n} \binom{2n}{j} \epsilon^{1+j} \wedge \epsilon^{2+2n-j} \]

In the sum we get contributions only from \(j = n \) and \(j = n + 1 \):

\[D_1^{2n} \epsilon^1 \wedge \epsilon^2 = \binom{2n}{n} \epsilon^{1+n} \wedge \epsilon^{2+n} + \binom{2n}{n+1} \epsilon^{2+n} \wedge \epsilon^{1+n} \]

\[= \left[\binom{2n}{n} - \binom{2n}{n+1} \right] \epsilon^{1+n} \wedge \epsilon^{2+n} = \frac{2n!}{n!(n+1)!} \epsilon^{1+n} \wedge \epsilon^{2+n} \]
Exactly by the same technique one finds:

\[n + k \neq 1 \wedge \ldots \wedge \neq i_k = \omega_{i_1, \ldots, i_k} = (n + k - i_1) \ldots (n + k - i_k)! \cdot \ldots \cdot (n + k - i_k)! (3) \]

where \(w = \sum_{j=1}^{k} (i_j - j) \)

It is the degree of the Schubert variety \(\Omega_{i_1, \ldots, i_k}(F) \), \(F \) a given complete flag of \(\mathbb{C}^n \).
Exactly by the same technique one finds:

\[
\int_{n+k} D_1^{kn} e^1 \wedge \ldots \wedge e^k = \omega_{i_1, \ldots, i_k} = \frac{(kn - w)! \prod_{j<k} (i_k - i_j)}{(n + k - i_1)! \cdot \ldots \cdot (n + k - i_k)!} \tag{3}
\]
Exactly by the same technique one finds:

\[
\int_{n+k} D_1^{kn} \epsilon_{i_1} \wedge \ldots \wedge \epsilon_{i_k} = \omega_{i_1, \ldots, i_k} = \frac{(kn - w)! \prod_{j<k} (i_k - i_j)}{(n + k - i_1)! \cdot \ldots \cdot (n + k - i_k)!} \tag{3}
\]

where \(w = \sum_{j=1}^{k} (i_j - j) \)
Exactly by the same technique one finds:

\[
\int_{n+k} \mathcal{D}^{kn} \epsilon^{i_1} \wedge \ldots \wedge \epsilon^{i_k} = \omega_{i_1, \ldots, i_k} = \frac{(kn - w)! \prod_{j<k} (i_k - i_j)}{(n + k - i_1)! \cdot \ldots \cdot (n + k - i_k)!} \quad (3)
\]

where \(w = \sum_{j=1}^{k} (i_j - j) \)

It is the degree of the Schubert variety

\[\Omega_{i_1 \ldots i_k}(F^\bullet),\]

\(F^\bullet \) a given complete flag of \(\mathbb{C}^n \).
Rational Space curves having flexes at prescribed points.

Question (Ranestad): Find a list of the number of rational curves in \mathbb{P}^3 of degree $n + 3$ having inflectional tangent at $2n$ general marked points. Any such a curve can be gotten by projecting a rational normal curve in \mathbb{P}^{n+3} from a \mathbb{P}^{n-1} which intersects the osculating plane at the marked points. Therefore the sought for number is that of the \mathbb{P}^{n-1}'s having such a behaviour. This amounts to compute the integral.

$$\int G(n, n+4) \sigma_2 n^2 \cap [G(n, n+4)] = \int G(4, n+4) \sigma_2 n^2 \cap [G(4, n+4)]$$
Rational Space curves having flexes at prescribed points.

Question (Ranestad): Find a list of the number of rational curves in \mathbb{P}^3 of degree $n + 3$ having inflectional tangent at $2n$ general marked points.
Question (Ranestad): Find a list of the number of rational curves in \mathbb{P}^3 of degree $n + 3$ having inflectional tangent at $2n$ general marked points.

Any such a curve can be gotten by projecting a rational normal curve in \mathbb{P}^{n+3} from a \mathbb{P}^{n-1} which intersects the osculating plane at the marked points. Therefore the sought for number is that of the \mathbb{P}^{n-1}'s having such a behaviour. This amounts to compute the integral.

$$\int_{G(n,n+4)} \sigma_2^{2n} \cap [G(n, n + 4)] = \int_{G(4,n+4)} \sigma_2^{2n} \cap [G(4, n + 4)]$$
Summary

One usually computes σ^2_n via iteration of Pieri's formula.

You may ask Schubert (1) doing it for you, but... when $n = 12$ you get the following message

Execution stopped: Stack limit reached. (Vainsencher, Økland – private communication).

However, we have a formula:

\[\text{(1) S. Katz and S. A. Strømme, “Schubert”, a Maple } \]
\[\text{package for intersection theory and enumerative geometry, http://math.uib.no/schubert/} \]
One usually computes σ_2^{2n} via iteration of Pieri’s formula.
One usually computes σ_2^{2n} via iteration of Pieri’s formula.

You may ask *Schubert*
One usually computes σ_2^{2n} via iteration of Pieri’s formula.

You may ask *Schubert* \(^{(1)}\)

\(^{(1)}\) [S. Katz and S. A. Strømme, “Schubert”, a Maple\(^{\text{\textcopyright}}\) package for intersection theory and enumerative geometry, http://math.uib.no/schubert/]
One usually computes σ_2^{2n} via iteration of Pieri’s formula.

You may ask *Schubert* (1) doing it for you, but...
One usually computes σ_2^{2n} via iteration of Pieri’s formula.

You may ask *Schubert* \(^{(1)}\) doing it for you, but...

...when $n = 12$ you get the following message

Execution stopped: Stack limit reached.

(Vainsencher, Økland – private communication).

\(^{(1)}\) [S. Katz and S. A. Strømme, “Schubert”, a Maple\(^{\circledast}\) package for intersection theory and enumerative geometry, http://math.uib.no/schubert/]
One usually computes $\sigma_{2^n}^2$ via iteration of Pieri’s formula.

You may ask *Schubert* \(^{(1)}\) doing it for you, but...

...when $n = 12$ you get the following message

Execution stopped: Stack limit reached.

(Vainsencher, Økland – private communication).

However, we have a formula:

\(^{(1)}\) [S. Katz and S. A. Strømme, “Schubert”, a Maple\(^{\circledast}\) package for intersection theory and enumerative geometry, http://math.uib.no/schubert/]
G(4, n+4) \quad \sigma^2 \quad n^2 \quad \cap \quad [G(4, n+4)] = [4]

X_l_1 + l_2 + l_3 + l_4 = 2n\quad l_1, l_2, l_3, l_4 \geq 0

0 \leq m_2 \leq l_2 - m_2 \quad m_3 \leq l_3 + l_2 - m_2 \quad \cdot \omega(I(l_1, l_2, l_3, l_4, m_1, m_2, m_3))

where

I(l_1, l_2, l_3, l_4, m_1, m_2, m_3) is the ordered 4-tuple of positive integers.

Letterio Gatto
Schubert Calculus on a Grassmann Algebra
\[\int_{G(4,n+4)} \sigma_2^{2n} \cap [G(4, n + 4)] = \] (4)
\[\int_{G(4, n+4)} \sigma_2^{2n} \cap [G(4, n + 4)] = \]

\[\sum_{l_1 + l_2 + l_3 + l_4 = 2n} \begin{pmatrix} 2n \\ l_1, l_2, l_3, l_4 \end{pmatrix} \begin{pmatrix} l_2 \\ m_2 \end{pmatrix} \begin{pmatrix} l_3 + l_2 - m_2 \\ m_3 \end{pmatrix} \cdot \omega I(l_1, l_2, l_3, l_4, m_1, m_2, m_3) \]
\[
\int_{G(4, n+4)} \sigma_2^{2n} \cap [G(4, n+4)] = (4)
\]

\[
\sum \binom{2n}{l_1, l_2, l_3, l_4} \binom{l_2}{m_2} \binom{l_3 + l_2 - m_2}{m_3} \cdot \omega(I(l_1, l_2, l_3, l_4, m_1, m_2, m_3))
\]

where

\[I(l_1, l_2, l_3, l_4, m_1, m_2, m_3)\]

is the ordered 4-tuple of positive integers

\[(1 + l_1, 2 + l_2 + m_2, 3 + l_3 + m_3, 4 + 2l_4 + (l_2 - m_2) + (l_3 - m_3)).\]
Summary

A very important question:
WHO CARE?

Letterio Gatto
Schubert Calculus on a Grassmann Algebra
A very important Question:
A very important Question: WHO CARE?
A very important Question:

WHO CARE?

We don’t, we may produce many similar formulas!
We got formula (4) by applying 2nd Newton formula to $D^2 n_2 (\bar{\pi}_1 \wedge \bar{\pi}_2 \wedge \bar{\pi}_3 \wedge \bar{\pi}_4) = D^2 n_2 (\bar{\pi}_1 \wedge \bar{\pi}_2 \wedge \bar{\pi}_3)^2 = 0$.

Then we apply the same formula to $D^2 n - l_1 n_2 (\bar{\pi}_2 \wedge \bar{\pi}_3 \wedge \bar{\pi}_4) = D^2 n - l_1 n_2 (\bar{\pi}_2 \wedge \bar{\pi}_3)^2$ and then once again, and so on...
We got formula (4) by applying 2nd Newton formula
We got formula (4) by applying 2nd Newton formula

\[D_h^m(\epsilon^i \wedge \alpha) = \sum_{j=0}^{m} \binom{m}{j} D_{h-1}^j(\epsilon^{i+j} \wedge D_h^{m-j} \alpha) \]
We got formula (4) by applying 2nd Newton formula
We got formula (4) by applying 2nd Newton formula to

\[D_2^{2n}(\epsilon^1 \wedge \epsilon^2 \wedge \epsilon^3 \wedge \epsilon^4) = D_2^{2n}((\epsilon^1 \wedge \epsilon^2 \wedge \epsilon^3) \wedge \epsilon^4) \]

\[\sum_{l_1=0}^{2n} \binom{2n}{l_1} D_1^{l_1}(\epsilon^{1+l_1} \wedge D_2^{2n-l_1}(\epsilon^2 \wedge \epsilon^3 \wedge \epsilon^4)). \]
We got formula (4) by applying 2nd Newton formula

to

\[D_2^{2n}(\epsilon^1 \land \epsilon^2 \land \epsilon^3 \land \epsilon^4) = D_2^{2n}((\epsilon^1 \land \epsilon^2 \land \epsilon^3) \land \epsilon^4) \]

\[\sum_{l_1=0}^{2n} \binom{2n}{l_1} D_1^{l_1}(\epsilon^{1+l_1} \land D_2^{2n-l_1}(\epsilon^2 \land \epsilon^3 \land \epsilon^4)) \].

Then we apply the same formula to

\[D_2^{2n-l_1}(\epsilon^2 \land \epsilon^3 \land \epsilon^4) = D_2^{2n-l_1}(\epsilon^2 \land (\epsilon^3 \land \epsilon^4)) \]

and then once again, and then...
Summary

we wrote a trivial CoCoA (version 4.7) code to compute the list varying n, and with an Apple iBook G4, 1.2GHz, RAM, 768Mb ←− my iBook in a couple of hours we got the following list:

Letterio Gatto

Schubert Calculus on a Grassmann Algebra
...we wrote a trivial CoCoA (version 4.7) code to compute the a list varying n, and
...we wrote a trivial \texttt{CoCoA} (version 4.7) code to compute the list varying n, and

with an Apple iBook G4, 1.2GHz, RAM, 768Mb
...we wrote a trivial CoCoA (version 4.7) code to compute the a list varying n, and

with an Apple iBook G4, 1.2GHz, RAM, 768Mb
...we wrote a trivial CoCoA (version 4.7) code to compute the a list varying n, and

with an Apple iBook G4, 1.2GHz, RAM, 768Mb

← my iBook
... we wrote a trivial CoCoA (version 4.7) code to compute the list varying n, and

with an Apple iBook G4, 1.2GHz, RAM, 768Mb

← my iBook

in a couple of hours we got the following list:
<table>
<thead>
<tr>
<th>n</th>
<th>#(summands)</th>
<th>(R_n := \int \sigma_2^{2n} \cap [G(4, 4+n)])</th>
<th>execution time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0.082s</td>
</tr>
<tr>
<td>1</td>
<td>13</td>
<td>0</td>
<td>0.242s</td>
</tr>
<tr>
<td>2</td>
<td>56</td>
<td>1</td>
<td>0.614s</td>
</tr>
<tr>
<td>3</td>
<td>142</td>
<td>5</td>
<td>1.449s</td>
</tr>
<tr>
<td>4</td>
<td>331</td>
<td>126</td>
<td>3.340s</td>
</tr>
<tr>
<td>5</td>
<td>641</td>
<td>3396</td>
<td>6.434s</td>
</tr>
<tr>
<td>6</td>
<td>1191</td>
<td>114675</td>
<td>12.081s</td>
</tr>
<tr>
<td>7</td>
<td>1981</td>
<td>4430712</td>
<td>20.053s</td>
</tr>
<tr>
<td>8</td>
<td>3221</td>
<td>190720530</td>
<td>32.755s</td>
</tr>
<tr>
<td>9</td>
<td>4866</td>
<td>8942188632</td>
<td>50.085s</td>
</tr>
<tr>
<td>10</td>
<td>7256</td>
<td>449551230102</td>
<td>1m 20s</td>
</tr>
<tr>
<td>11</td>
<td>10268</td>
<td>23948593282950</td>
<td>2m 55s</td>
</tr>
<tr>
<td>12</td>
<td>14418</td>
<td>1339757254689348</td>
<td>2m 44s</td>
</tr>
<tr>
<td>13</td>
<td>19466</td>
<td>78153481093195800</td>
<td>4m 02s</td>
</tr>
<tr>
<td>14</td>
<td>26156</td>
<td>4727142898098368085</td>
<td>5m 2s</td>
</tr>
<tr>
<td>15</td>
<td>34086</td>
<td>295116442188446065635</td>
<td>9m 9s</td>
</tr>
<tr>
<td>16</td>
<td>44286</td>
<td>18945322608397492982250</td>
<td>10m 46s</td>
</tr>
<tr>
<td>17</td>
<td>56141</td>
<td>1246718376589846006057200</td>
<td>11m 52s</td>
</tr>
<tr>
<td>18</td>
<td>71031</td>
<td>83878801924226511500933250</td>
<td>16m 37s</td>
</tr>
<tr>
<td>19</td>
<td>88071</td>
<td>57568600111979383129907915050</td>
<td>19m 55s</td>
</tr>
<tr>
<td>20</td>
<td>109061</td>
<td>402290757162008042628235950300</td>
<td>25m 53s</td>
</tr>
<tr>
<td>21</td>
<td>132783</td>
<td>28575935656515287427874861725000</td>
<td>34m 37s</td>
</tr>
<tr>
<td>22</td>
<td>161533</td>
<td>2060372706082551084572192852992530</td>
<td>01h 07m</td>
</tr>
</tbody>
</table>
Two days ago, Jan Magnus Økland sent me the list up to \(n = 30 \). He got it in a couple of hours... using Schubert2 for Macaulay (Grayson, Daniel and Stillmann) on a machine with processor speed 2.2 GHz and 16Gb Ram.

Then, yesterday morning I tried with CoCoA \(n = 23 \) and \(n = 24 \). In a couple of hours I got

\[
R_{23} = 150602793256105806699840616089824880
\]

and

\[
R_{24} = 11147684597786902087815929474416203276
\]
Two days ago, Jan Magnus Økland sent me the list up to \(n = 30 \).
Two days ago, Jan Magnus Økland sent me the list up to $n = 30$. He got it in a couple of hours...
...using Schubert2 for Macaulay (Grayson, Daniel and Stillmann)
Two days ago, Jan Magnus Økland sent me the list up to $n = 30$.

He got it in a couple of hours...

...using Schubert2 for Macaulay (Grayson, Daniel and Stillmann)
on a machine with processor speed 2,2 GHz and 16Gb Ram
Two days ago, Jan Magnus Økland sent me the list up to $n = 30$. He got it in a couple of hours... using Schubert2 for Macaulay (Grayson, Daniel and Stillmann) on a machine with processor speed 2,2 GHz and 16Gb Ram.

Then, yesterday morning I tried with CoCoA $n = 23$ and $n = 24$. In a couple of hours I got

$$R_{23} = 150602793256105806699840616089824880$$

$$R_{24} = 11147684597786902087815929474416203276$$
Two days ago, Jan Magnus Økland sent me the list up to $n = 30$. He got it in a couple of hours…

…using Schubert2 for Macaulay (Grayson, Daniel and Stillmann) on a machine with processor speed 2,2 GHz and 16Gb Ram

Then, yesterday morning I tried with CoCoA $n = 23$ and $n = 24$. In a couple of hours I got

$$R_{23} = 150602793256105806699840616089824880$$

and

$$R_{24} = 11147684597786902087815929474416203276$$
Summary

Thank You!

(Letterio Gatto)

http://calvino.полит.ит/~gatto/

Schubert Calculus on a Grassmann Algebra
Thank You!
Thank You!
(Grazie)
Thank You!
(Grazie)
Thank You!
(Grazie)
Thank You!
(Grazie)

letterio

http://
Thank You!
(Grazie)

http://calvino.it/~gatto

letterio
Thank You!
(Grazie)
Thank You!
(Grazie)

http://cal
Thank You!
(Grazie)

http://cal
Thank You!
(Grazie)

http://calv
Thank You!
(Grazie)
Thank You!
(Grazie)

http://calvin
Thank You!
(Grazie)

http://calvino
Thank You!
(Grazie)

http://calvino.
Thank You!
(Grazie)

http://calvino.p
Thank You!
(Grazie)
Thank You!
(Grazie)

http://calvino.pol
Thank You!
(Grazie)

http://calvino.poli
Thank You!
(Grazie)

http://calvino.polit
Thank You!
(Grazie)

http://calvino.polito
Thank You!
(Grazie)

http://calvino.polito.it
Thank You!
(Grazie)
Thank You!
(Grazie)

http://calvino.polito.it

letterio
Thank You!
(Grazie)

http://calvino.polito.it/~
Thank You!
(Grazie)

http://calvino.polito.it/~g

letterio
Thank You!
(Grazie)

http://calvino.polito.it/~ga
Thank You!
(Grazie)

Letterio Gatto
Schubert Calculus on a Grassmann Algebra

http://calvino.polito.it/~gat
Thank You!
(Grazie)

http://calvino.polito.it/~gatt
Thank You!
(Grazie)

http://calvino.polito.it/~gatto