Randomized consensus algorithms over large scale networks

Fabio Fagnani
Dipartimento di Matematica, Politecnico di Torino, ITALY

joint work with

Sandro Zampieri
Department of Information Engineering, Università di Padova, ITALY

EE-YALE 10/05/07
Outline

- Problem formulation and motivation
- Deterministic consensus algorithms
- Random consensus algorithms
- Performance issues
- Mean square analysis, examples
- Concentration results
- Conclusions
Problem formulation

$G = (V, E)$ directed graph.

$V = \{1, \ldots, N\}$

$\forall i \in V$, a measure $x_i \in \mathbb{R}$

GOAL:

compute $X_A := \sum x_i$, iteratively, exchanging information along available edges in a decentralized fashion

APPLICATIONS:

- Load balancing in computer networks
- Data fusion in sensor networks
- Coordination of multi-agent systems
Consensus algorithms I

\(P(t) \) \(N \times N \) stochastic matrix. \((P(t)_{ij} \geq 0, P(t)\mathbf{1} = \mathbf{1})\)

\(x(t)_i \) estimation of \(x_A \) by agent \(i \) at time \(t \). \(x(t) \in \mathbb{R}^N \)

\[
x(t + 1) = P(t)x(t), \quad x(0)_i = x_i
\]

\(x(t) = Q(t)x(0), Q(t) = \prod_{s=0}^{t-1} P(s), \)

- **CONSENSUS:** \(Q(t) \rightarrow \mathbf{1}\rho^T \Rightarrow x(t) \rightarrow \mathbf{1}\rho^Tx(0) \)
- **AVERAGE CONSENSUS:** \(\rho = N^{-1}\mathbf{1} \)
- **\(P(t) \) ADAPTED to \(G \):** \(P(t)_{ij} > 0 \Rightarrow (j, i) \in E. \)
Consensus algorithms II

\[\mathcal{G} = (V, E) \] strongly connected
\[P \text{ stochastic} \quad P_{ij} > 0 \iff (j, i) \in E, \quad P_{ii} > 0 \quad \forall i \]

- \(P(t) = P \) achieves \textit{consensus}\
- If \(\mathbb{1}^T P = \mathbb{1}^T \) then achieves \textit{av. consensus}

A possible construction:
\[A_G \in \{0, 1\}^{N \times N}: \quad (A_G)_{ij} = 1 \iff (j, i) \in E \]
\[D_G = \text{diag}(\nu_1, \ldots, \nu_N), \quad \nu_i = |\{j | (j, i) \in E\}| = \sum_j (A_G)_{ij} \]

- \(P = kI + (1 - k)D_G^{-1}A_G \) achieves \textit{consensus}\
- \(G \) regular, out-deg. = in-deg. \Rightarrow \textit{av. consensus}

Tsitsiklis, Cybenko, Morse, Olfati-Saber, Murray, Francis,...
Randomized algorithms

$P(t)$ chosen randomly at every time step

- **PROBABILISTIC CONSENSUS:**

 $Q(t) \to \mathbb{1} \rho^T$ a.s. \(\rho \) random stochastic vector

Mean evolution:

\[
\overline{P} = \overline{P(t)}, \quad \overline{x(t)} = \overline{P}^t x(0).
\]

THEOREM: (Cogburn 1987) Assume that

- \(G = (V, E) \) strongly connected
- \(\overline{P}_{ij} > 0 \iff (j, i) \in E, \)
- \(P(t)_{ii} > 0 \forall i \) almost surely.

Then, $P(t)$ achieves probabilistic consensus.
Example I

SYMMETRIC GOSSIP (Boyd et al. AC-2006)

G undirected, strongly connected

At every time t:

- Choose $i \in V$ randomly, and a neighbor j of i randomly
- i and j exchange their current estimations
- $x(t + 1)_i = kx(t)_i + (1 - k)x(t)_j$
- $x(t + 1)_j = kx(t)_j + (1 - k)x(t)_i$

$$
\overline{P}_{ij} = \frac{1}{N} \left[\frac{1}{\nu_i} + \frac{1}{\nu_j} \right] k, \quad (i, j) \in E
$$

\Downarrow

Average probabilistic consensus
Example II

ASYMMETRIC GOSSIP G strongly connected

At every time t:

- Choose $i \in V$ randomly, and an in-neighbor j of i randomly
- i receives the estimation of j
- $x(t + 1)_i = kx(t)_i + (1 - k)x(t)_j$

$$\overline{P}_{ij} = \frac{1}{2N} \left[\frac{1}{\nu_i} + \frac{1}{\nu_j} \right] k, \quad (i, j) \in E$$

\[\downarrow\]

Probabilistic consensus

Average is not preserved in general!
Example III

SYNCRONOUS GOSSIP G strongly connected

At every time t:

- Every $i \in V$ chooses an in-neighbor j randomly
- i receives the estimation of j
- $x(t + 1)_i = kx(t)_i + (1 - k)x(t)_j$

$$
\overline{P} = (1 - k)I + kD_{G}^{-1}A_{G}
$$

↓

Probabilistic consensus

Average is not preserved in general!
Examples IV

BROADCASTING \mathcal{G} strongly connected

At every time t:

- A node $i \in V$ is chosen randomly
- i sends its estimation to all its out-neighbors
- $x(t + 1)_j = k x(t)_j + (1 - k) x(t)_i$, if $(i, j) \in E$

$$
\overline{P} = I + \frac{k}{N} [A_{\mathcal{G}} - D_{\mathcal{G}}]
$$

⇓

Probabilistic consensus

Average is not preserved in general!
Complexity and performance

WHY RANDOMNESS?

• Computation and transmission consume energy. You want to keep them low.
• In many applications, an agent can only receive data from just one neighbor at a time.
• Under these limitations, random algorithms perform better
Complexity and performance

WHY RANDOMNESS?

- Computation and transmission consume energy. You want to keep them low.
- In many applications, an agent can only receive data from just one neighbor at a time.
- Under these limitations, random algorithms perform better

WHY ASYMMETRIC SCHEMES?

- Transmission links can be quite asymmetric (sensor networks)
- In many applications it is sufficient to get close to the average
Performance issues

\[d(t) = N^{-1} \| x(t) - \mathbb{1} x_A(t) \|^2, \quad \beta(t) = |x_A(t) - x_A(0)|^2. \]

Notice that:
\[\frac{1}{N} \| x(t) - \mathbb{1} x_A(0) \|^2 = d(t) + \beta(t). \]

Rate of convergence can always be defined:

\[\lim_{t \to +\infty} d(t)^{1/t} \text{ is constant a.s.} \]

It equals the second Lyapunov exponent of \(P(t) \).

Is the right performance index?
Performance issues: an example

Symmetric gossip. \(\mathcal{G} \) complete, \(k = 1/2, \ N = 2^r \).

\[i \leftrightarrow j \implies P(t) = R^{ij} = I - 2^{-1}(e_i - e_j)(e_i - e_j)^* \]

There exist edges \((i_1, j_1), \ldots, (i_s, j_s)\) such that \(R^{i_1,j_1} \cdots R^{i_s,j_s} = N^{-1} \mathbb{1} \mathbb{1}^* \)

Case \(r = 2 \): \(R^{2,4}R^{1,3}R^{3,4}R^{1,2} = 4^{-1} \mathbb{1} \mathbb{1}^* \)

Consensus is achieved in finite time, almost surely!

Hence, \(\lim_{t \to +\infty} d(t)^{1/t} = 0 \) a.s.
Performance issues: an example

Plot of $\log d(t)$:

Case $N = 8$

Time to consensus $T \sim 1000$ is very big.

For time $t < T$ we have an exponential convergence with rate ≈ 0.93.

It can be caught by analyzing $\mathbb{E}[d(t)]$.
Mean square analysis

Another performance index:

\[R = \limsup_{t \to +\infty} (\mathbb{E}[d(t)])^{1/t} \geq \lim_{t \to +\infty} d(t)^{1/t} \]

We can write

\[\mathbb{E}[d(t)] = N^{-1} x^*(0) \Delta(t) x(0) \]

where

\[\Delta(t + 1) = \mathcal{L}(\Delta(t)) := \mathbb{E}[P(0)^* \Delta(t) P(0)], \]
\[\Delta(0) = I - N^{-1} 11^* \]

\[R = \text{spectral radius of } \mathcal{L} \text{ on } \{ S \text{ sym}, S1 = 0 \} \]
The case when \mathcal{G} is complete

- **SYMMETRIC GOSSIP** $k = 1/2$
 \[R_{\text{sym}} = 1 - \frac{1}{(N-1)} \]

- **SYNCR. ASYM. GOSSIP** $k = 1/2$
 \[R_{\text{in}} = \frac{1}{2} + O(N^{-1}) \]

- **BROADCASTING**
 \[R_{\text{br}} = (1 - k)^2. \]

REMARKS:

- For $N = 16$, $R_{\text{sym}} \simeq 0.93$
- $R_{\text{sym}}^N \to e^{-1} < R_{\text{in}}$
- Some analytical results for Cayley graphs.
The cycle graph

R as a function of k: symmetric gossip (dashed line), synchronous gossip (dotted line), broadcasting (solid line) for $N = 20$. For symmetric and broadcasting, rates are powered to N.
Concentration results I

Assume \overline{P} achieves average consensus.

$$d(t) = N^{-1}||x(t) - \mathbb{1}x_A(t)||^2, \quad \beta(t) = |x_A(t) - x_A(0)|^2.$$

$$\mathbb{P}[|d(t) - \mathbb{E}[d(t)]| \geq \delta] \leq \exp\left(-\frac{\delta^2 N^\alpha}{K||x(0)||^4 t}\right)$$

$$\mathbb{P}[\beta(t) \geq \delta] \leq \exp\left(-\frac{\delta N^\alpha}{K||x(0)||^2 t}\right).$$

Azuma’s inequality + edge exposure technique.

- **SYM., ASYM. GOSSIP:** $\alpha = 2$
- **SYNCR. GOSSIP:** $\alpha = 1$
- **BROADCASTING:** $1 \leq \alpha \leq 2$.
A digression

When does \overline{P} achieve average consensus?

\overline{P} needs to be doubly stochastic.

GOSSIP MODELS, BROADCASTING:
out degree$_i = \text{in degree}_i$ for all $i \in V$.

True for **symmetric** (undirected) graphs and for Cayley graphs.

For the gossip models, a variation of the proposed algorithms yields \overline{P} doubly stochastic whenever \mathcal{G} is strongly connected.
Concentration results II

Theorem: Let \(T_N = O (N^{\alpha-\epsilon}) \). Then, a. s.,

\[
\limsup_{N \to +\infty} \sup_{t \leq T_N} |d(t) - \mathbb{E}[d(t)]| = 0
\]

\[
\limsup_{N \to +\infty} \sup_{t \leq T_N} \beta(t) = 0 .
\]

• For \(t \leq T_N \) and large \(N \), \(d(t) \) is well approximated by its mean \(\mathbb{E}[d(t)] \). This gives motivation for considering the rate of convergence of \(\mathbb{E}[d(t)] \) for analysis and optimization.

• For \(t \leq T_N \) and large \(N \), the displacement \(\beta(t) \) is uniformly small.

Is \(t \leq T_N \) the interesting time range?
Concentration results III

ϵ-averaging time:

$$T_N(\epsilon) = \inf\{t \in \mathbb{N} \mid \mathbb{P}(||x(t) - x_A(0)\| \geq \epsilon ||x(0)||) \leq \epsilon\}$$

In many cases: $T_N(\epsilon) \asymp N^\theta \ln \epsilon^{-1}$.

- **SYM. GOSSIP:** (Boyd et al.)
 - complete graph: $\theta = 1$
 - n-torus: $\theta = n^{-1}(2 + n)$.

- **ASYM. GOSSIP:** Same results (for complete).

- **SYNCR. GOSSIP, BROAD.:**
 - complete graph: $\theta = 0$
 - (Conjectured) n-torus: $\theta = 2/n$ and $\theta = n^{-1}(2 + n)$.
Concentration results IV

Concentration results valid up to $T_N(\epsilon)$ if:

- **ALL GOSSIP:** complete, n-torus for $n \geq 3$.
- **BROADCASTING:** n-torus for $n \geq 3$.

\[
\limsup_{N \to +\infty} \sup_{t \leq T_N(\epsilon)} |d(t) - \mathbb{E}[d(t)]| = 0
\]

\[
\limsup_{N \to +\infty} \sup_{t \leq T_N(\epsilon)} \beta(t) = 0.
\]

• For the broadcasting model with complete graph:
 $\beta(t) \not\to 0$ for $N \to +\infty$.

• What about the n-torus for $n = 1, 2$??
Large time behavior

\[\beta(t) \rightarrow \beta(\infty) = \left| (\rho^* - N^{-1}1^*)x(0) \right|^2 \]

\[\mathbb{E}[\beta(\infty)] = x(0)^* B x(0), \quad B = \mathbb{E}[\rho \rho^*] - N^{-2}11^* \]

\[\mathcal{L}(\mathbb{E}[\rho \rho^*]) = \mathbb{E}[\rho \rho^*], \quad \mathcal{L} \Rightarrow B \]

SYNCR. GOSSIP complete graph, \(k = 1/2 \):

\[B = O(N^{-2})(I - N^{-1}11^*) \]

\[\mathbb{E}[\beta(\infty)] = N^{-1}\|x(0)\|^2 O(N^{-1}) \]

\[\limsup_{N \rightarrow +\infty} \sup_{t} \beta(t) = 0 \]
Summary

• Random consensus algorithms which do not need symmetric communication but yield consensus near the average.

• In some cases precise analytical results

• Concentration results which validate the mean square analysis for the purpose of analysis and optimization

• Theory also applies to deterministic consensus models in the context of random packet drops or agent failures.
Future research

• Complete the analysis for Cayley graphs
• Extend analysis to other examples (random graphs)
• Investigate those cases where concentration seems to fail.
• Threshold phenomena.
• Analysis for other consensus algorithms (with memory, Van Roy’s model)
• Models with noisy or quantized information.