On the achievable capacity of group codes over symmetric channels

ITA Workshop 2007
Open problems session

Fabio Fagnani
Dipartimento di Matematica, Politecnico di Torino, ITALY
Symmetric Gaussian channels

- $S \subseteq \mathbb{R}^q$ **GEOMETRICALLY UNIFORM** if

 \[s_0, s_1 \in S \Rightarrow \exists g \in \text{Iso}(S) : gs_0 = s_1 \]

- **Example:** 8-PSK and 8h-PSK constellations

- **S-AWGN CHANNEL**

 \[s \in S \mapsto s + N(0, \sigma^2 I) \]
GU codes

$S \subseteq \mathbb{R}^q$ GU constellation.

GU CODE over S of length N: $\mathcal{C} \subseteq S^N$ GU
GU codes

$S \subseteq \mathbb{R}^q$ GU constellation.

GU CODE over S of length N: $C \subseteq S^N$ GU

PROBLEM A:

Do GU codes suffice to achieve the capacity of the S'-AWGN channel?
Generating groups

$S \subseteq \mathbb{R}^q$ GU

- $G \leq \text{Iso}(S)$ **GENERATING GROUP** for S if

 $s_0, s_1 \in S \Rightarrow \exists! g \in G : gs_0 = s_1$

- **ISOM. LABELLING**: $\mu : G \leftrightarrow S, \mu(g) = gs_0$

- **Ex**: 8–PSK: $G = \mathbb{Z}_8$ OR $G = D_4$

- \[\begin{align*}
 &3 \quad 2 \quad 1 \\
 &4 \quad 5 \quad 6 \\
 &7 \quad 0
\end{align*} \quad \begin{align*}
 &r \quad rs \\
 &r^2 \quad r^3 \\
 &r^2s \quad r^3s
\end{align*} \]
G-codes

$S \subseteq \mathbb{R}^q$ GU, G gen. group, $\mu : G \rightarrow S$ labelling.

G-CODE: $\mathcal{X} \leq G^N$ subgroup

G-codes are special GU codes:

$\mathcal{X} \leq G^N, \quad \mu : \mathcal{X} \mapsto \mu(\mathcal{X}) \subseteq S^N$ GU code.
\(G\text{-codes}\)

\[S \subseteq \mathbb{R}^q \text{ GU, } G \text{ gen. group, } \mu : G \rightarrow S \text{ labelling.} \]

\(G\text{-CODE:} \; \mathcal{X} \leq G^N \text{ subgroup}\)

\(G\text{-codes are special GU codes:}\)

\[\mathcal{X} \leq G^N, \; \mu : \mathcal{X} \mapsto \mu(\mathcal{X}) \subseteq S^N \text{ GU code.} \]

PROBLEM B:

Does there exist a generating group \(G\) for \(S\) such that \(G\text{-codes}\) allow to achieve the capacity of the \(S\text{-AWGN channel}\)?
G-codes

$S \subseteq \mathbb{R}^q$ GU, G gen. group, $\mu : G \rightarrow S$ labelling.

G-CODE: $\mathcal{X} \leq G^N$ subgroup

G-codes are special GU codes:

$\mathcal{X} \leq G^N$, $\mu : \mathcal{X} \mapsto \mu(\mathcal{X}) \subseteq S^N$ GU code.

PROBLEM C:

For a fixed generating group G for S, do G-codes allow to achieve the capacity of the S-AWGN channel?
Some history

- Group codes appear in 1968 (Slepian)
- Widely studied during the 90’s (Forney, Loeliger, Trott)
- They yield distance profiles independent of the reference point
- They yield the UEP
- Recent research on their use for high performance coding schemes
- Problem C was conjectured by Loeliger in 1991
Some answers to problem C

- 2-PAM AWGN channel and $G = \mathbb{Z}_2$: YES (Classical 60’s).
Some answers to problem C

- 2-PAM AWGN channel and \(G = \mathbb{Z}_2 \): YES (Classical 60’s).

- \(p \)-PSK AWGN channel (\(p \) prime) and \(G = \mathbb{Z}_p \): YES (Easy extension)
Some answers to problem C

- **2-PAM AWGN** channel and \(G = \mathbb{Z}_2 \):
 - YES (Classical 60’s).

- **\(p \)-PSK AWGN** channel (\(p \) prime) and \(G = \mathbb{Z}_p \):
 - YES (Easy extension)

- **\(p^r \)-PSK AWGN** channel and \(G = \mathbb{Z}_{p^r} \):
 - YES (G. Como’s bach. thesis 2004)
Some answers to problem C

- **S-PSK AWGN channel and G Abelian:**

 Formula for capacity of G-codes (Como-F. 2005)

 \[
 (\text{Case } G = \mathbb{Z}_{p^r}) \quad C_{\mathbb{Z}_{p^r}} := \min_{l=1}^{r} \frac{r}{l} C_l \leq C_r.
 \]

 S_l sub-constellation associated with $p^{r-l}\mathbb{Z}_{p^r}$

 C_l Shannon capacity of the S_l-AWGN channel.
Some answers to problem C

- **S-PSK AWGN channel and G Abelian:**

 Formula for capacity of G-codes (Como-F. 2005)

 (Case $G = \mathbb{Z}_{p^r}$)

 $$C_{\mathbb{Z}_{p^r}} := \min_{l=1}^{r} \frac{r}{l} C_l \leq C_r .$$

 S_l sub-constellation associated with $p^{r-l}\mathbb{Z}_{p^r}$
 C_l Shannon capacity of the S_l-AWGN channel.

- **$8h$-PSK AWGN channel and $G = \mathbb{Z}_8$:**
 - $C'_{\mathbb{Z}_{p^r}} < C_r \Rightarrow \text{NO}$
 - What about D_4?
Open problems

• Analysis for non-Abelian generating groups.
• Semidirect group structures.
• Error exponents, minimum distances.