Standard universal dendrites as small Polish structures
The concept of *small Polish structures* has been introduced and studied in K. Krupiński, *Some model theory of Polish structures*, TAMS.
The concept of *small Polish structures* has been introduced and studied in K. Krupiński, *Some model theory of Polish structures*, TAMS

Goals:

- Provide a setting which allows simultaneous application of ideas and techniques from model theory and descriptive set theory.
The concept of *small Polish structures* has been introduced and studied in K. Krupiński, *Some model theory of Polish structures*, TAMS

Goals:

- Provide a setting which allows simultaneous application of ideas and techniques from model theory and descriptive set theory. In particular:
 - prove counterparts of some results from stability theory;
The concept of *small Polish structures* has been introduced and studied in K. Krupiński, *Some model theory of Polish structures*, TAMS

Goals:

- Provide a setting which allows simultaneous application of ideas and techniques from model theory and descriptive set theory.

In particular:

- prove counterparts of some results from stability theory;
- find, in this wider context, counterexamples to open problems;
The concept of *small Polish structures* has been introduced and studied in K. Krupiński, *Some model theory of Polish structures*, TAMS

Goals:

- Provide a setting which allows simultaneous application of ideas and techniques from model theory and descriptive set theory.

In particular:

- prove counterparts of some results from stability theory;
- find, in this wider context, counterexamples to open problems;
- provide a (yet another) tool to measure complexity of dinamycal systems.
A **Polish structure** is a pair \((X, G)\) where:

- \(G\) is a Polish group acting faithfully on a set \(X\)
 i.e. \(\forall g, g' \in G \ (g \neq g' \implies \exists a \in X \ ga \neq g'a)\)
- the stabilisers of all singletons are closed

This generalises the notion of a profinite structure.

Notation:

For \(A \subseteq X\), \(G_A\) will denote the pointwise stabiliser of \(A\).
A **Polish structure** is a pair \((X, G)\) where:

- \(G\) is a Polish group acting faithfully on a set \(X\) i.e. \(\forall g, g' \in G \ (g \neq g' \Rightarrow \exists a \in X \ ga \neq g'a)\)
- the stabilisers of all singletons are closed

This generalises the notion of a profinite structure.
A **Polish structure** is a pair \((X, G)\) where:

- \(G\) is a Polish group acting faithfully on a set \(X\) i.e \(\forall g, g' \in G \ (g \neq g' \Rightarrow \exists a \in X \ ga \neq g'a)\)
- the stabilisers of all singletons are closed

This generalises the notion of a profinite structure.

Notation: For \(A \subseteq X\), \(G_A\) will denote the pointwise stabiliser of \(A\).
Independence

A notion of independence in Polish structures is introduced.

Let \(\bar{a} \in X^{<\omega} \) and \(A \subseteq B \subseteq X \) finite.

The idea is to say that \(\bar{a} \) is independent from \(B \) over \(A \) if, once \(A \) has been fixed, asking to fix \(B \) does not add too much constraint on \(\bar{a} \), i.e.

\[
G_B \bar{a} \text{ is big in } G_A \bar{a}.
\]
Some topological notions of bigness: Open, non-meagre,...

However:
Some topological notions of bigness: Open, non-meagre,...

However:

- X does not necessarily have a topology.
Some topological notions of bigness: Open, non-meagre,...

However:
- X does not necessarily have a topology.
- Even if X has a nice topology, some orbits $G_{A\tilde{a}}$ might behave badly, like being meagre in themselves.
Some topological notions of bigness: Open, non-meagre,...

However:
- X does not necessarily have a topology.
- Even if X has a nice topology, some orbits $G_\bar{a}$ might behave badly, like being meagre in themselves.

Thus the relations of independence are defined via a pull back to the group G.
Let $\pi_A : G_A \to G_A\bar{a}$ and check whether $g \mapsto g\bar{a}$

$$\pi_A^{-1}(G_B\bar{a})$$

is big in $\pi_A^{-1}(G_A\bar{a}) = G_A$.
Let \(\pi_A : G_A \to G_{A\bar{a}} \) and check whether
\[
g \mapsto g\bar{a}
\]

\[
\pi_A^{-1}(G_B\bar{a}) \text{ is big in } \pi_A^{-1}(G_A\bar{a}) = G_A.
\]

Definitions.
Let \(\bar{a} \in X^{<\omega} \) and \(A, B \subseteq \text{fin} \ X \) (most often \(A \subseteq B \)).

\(\bar{a} \downarrow_{A} B \): \(\bar{a} \) is **o-independent** from \(B \) over \(A \) if \(\pi_A^{-1}(G_{A\cup B}\bar{a}) \) is open in \(G_A \) (written \(\pi_A^{-1}(G_{A\cup B}\bar{a}) \subseteq_{o} G_A \)).

\(\bar{a} \downarrow_{A}^{nm} B \): \(\bar{a} \) is **nm-independent** from \(B \) over \(A \) if \(\pi_A^{-1}(G_{A\cup B}\bar{a}) \) is non-meagre in \(G_A \) (written \(\pi_A^{-1}(G_{A\cup B}\bar{a}) \subseteq_{nm} G_A \)).
Let \(\pi_A : G_A \to G_A\bar{a} \) and check whether
\(g \mapsto g\bar{a} \)

\[\pi_A^{-1}(G_B\bar{a}) \text{ is big in } \pi_A^{-1}(G_A\bar{a}) = G_A. \]

Definitions.
Let \(\bar{a} \in X^{<\omega} \) and \(A, B \subseteq_{\text{fin}} X \) (most often \(A \subseteq B \)).

\(\bar{a} \downarrow^o_A B \): \(\bar{a} \) is **o-independent** from \(B \) over \(A \) if \(\pi_A^{-1}(G_{A\cup B}\bar{a}) \) is open in \(G_A \) (written \(\pi_A^{-1}(G_{A\cup B}\bar{a}) \subseteq_o G_A \)).

\(\bar{a} \downarrow^{nm}_A B \): \(\bar{a} \) is **nm-independent** from \(B \) over \(A \) if \(\pi_A^{-1}(G_{A\cup B}\bar{a}) \) is non-meagre in \(G_A \) (written \(\pi_A^{-1}(G_{A\cup B}\bar{a}) \subseteq_{nm} G_A \)).

Remark. If \(X \) is separable metrisable, the action \(G \times X \to X \) is continuous and \(G_A\bar{a} \) is not meagre in itself, then
\[\bar{a}_A^\star B \iff G_{A\cup B}\bar{a} \subseteq \star G_A\bar{a} \]

(for \(\star = nm \) it is enough \(X \) being Hausdorff)
Example: $A = \emptyset$.

\[
\bar{a} \downarrow^* B \text{} \iff \{g \in G \mid \exists h \in G_B \ s.t. \ g\bar{a} = h\bar{a}\} \subseteq_G G
\]
Example: $A = \emptyset$.

$\overline{\mathcal{a}} \downarrow^* \mathcal{B}$ iff $\{g \in G \mid \exists h \in G_B \ g\overline{\mathcal{a}} = h\overline{\mathcal{a}}\} \subseteq^* G$

The opposite situation: small orbits. Let $A \subseteq_{\text{fin}} X$.

- $dcl(A) = \{a \in X \mid G_A a = \{a\}\}$: definable closure of A
- $acl(A) = \{a \in X \mid G_A a \text{ is finite}\}$: strong algebraic closure of A
- $Acl(A) = \{a \in X \mid G_A a \text{ is at most countable}\}$: algebraic closure of A

For any $A \subseteq X$, define

$$dcl(A) = \bigcup_{A_0 \subseteq_{\text{fin}} X} dcl(A_0),$$

etc.
Basic properties of independence

To develop a counterpart of basic geometric stability theory, five properties of the independence relation are needed:

- **Invariance**: \(\tilde{a} \downarrow_A^* B \iff g\tilde{a} \downarrow_{gA}^* gB \)
- **Symmetry**: \(\tilde{a} \downarrow_A^* \tilde{b} \iff \tilde{b} \downarrow_A^* \tilde{a} \)
- **Transitivity**: \(\tilde{a} \downarrow_A^* B \land \tilde{a} \downarrow_B^* C \iff \tilde{a} \downarrow_A^* C \)
- **Existence of independent extensions**: \(a \in Acl(A) \iff \forall B \ \tilde{a} \downarrow_A^* B \)
A Polish structure \((X, G)\) is small if
\[\forall n, \ G \times X^n \to X^n\] has at most countably many orbits
A Polish structure \((X, G)\) is \textit{small} if
\[\forall n, \ G \times X^n \to X^n \text{ has at most countably many orbits}\]

(iff \(\forall a_1, \ldots, a_n \in X, \ G_{a_1, \ldots, a_n} \times X \to X \text{ has at most countably many orbits}\))
Existence of independent extensions

Theorem. Let (X, G) be a small Polish structure. Then

\[\forall \bar{a}, \forall A \subseteq B \subseteq_{\text{fin}} X, \]

Remark. The same is not true for o-independent extensions.
Existence of independent extensions

Theorem. Let \((X, G)\) be a small Polish structure. Then

\[
\forall \tilde{a}, \forall A \subseteq B \subseteq \text{fin} \ X, \ \exists \tilde{b} \in G_A \tilde{a}
\]
Theorem. Let \((X, G)\) be a small Polish structure. Then

\[
\forall \bar{a}, \forall A \subseteq B \subseteq_{\text{fin}} X, \exists \bar{b} \in G_{A\bar{a}}
\]

such that

\[
\bar{b} \downarrow^{{nm}}_{A} B
\]
Existence of independent extensions

Theorem. Let \((X, G)\) be a small Polish structure. Then

\[
\forall \tilde{a}, \forall A \subseteq B \subseteq_{\text{fin}} X, \exists \tilde{b} \in G_A \tilde{a}
\]

such that

\[
\tilde{b} \downarrow^\text{nm}_A B
\]

Remark. The same is not true for \(o\)-independent extensions.
Adaptation of some concepts from stability theory
Adaptation of some concepts from stability theory

- $X^{eq} = \bigcup \{X^n/E \mid E \text{ invariant eq. rel. on } X^n, \text{ s.t } \text{Stab}([a]_E) \leq_c G\}$, the \textit{imaginary extension} of X
Adaptation of some concepts from stability theory

- $X^{eq} = \bigcup \{ X^n/E \mid E \text{ invariant eq. rel. on } X^n, \text{ s.t } \text{Stab}([a]_E) \leq_c G \}$, the imaginary extension of X
- Sets X^n/E are the sorts of X^{eq}
Adaptation of some concepts from stability theory

- $X^{eq} = \bigcup \{ X^n/E \mid \text{E invariant eq. rel. on } X^n, \text{ s.t } \text{Stab}([a]_E) \leq_c G \}$, the imaginary extension of X
- Sets X^n/E are the sorts of X^{eq}
- $D \subseteq X^n/E$, for X^n/E a sort, is definable on $A \subseteq_{\text{fin}} X^{eq}$ if $G_A D = D$ and $\text{Stab}(D) \leq_c G$

Proposition. Every definable set in X^{eq} has a name in X^{eq}.
Adaptation of some concepts from stability theory

- $X^{eq} = \bigcup \{ X^n/E \mid E \text{ invariant eq. rel. on } X^n, \text{ s.t } Stab([a]_E) \leq_c G \}$, the imaginary extension of X
- Sets X^n/E are the sorts of X^{eq}
- $D \subseteq X^n/E$, for X^n/E a sort, is definable on $A \subseteq_{\text{fin}} X^{eq}$ if $G_A D = D$ and $Stab(D) \leq_c G$
- $d \in X^{eq}$ is a name for D if $\forall g \in G (gD = D \iff gd = d)$
Adaptation of some concepts from stability theory

- $X^{eq} = \bigcup \{X^n/E \mid E \text{ invariant eq. rel. on } X^n, \text{ s.t } Stab([a]_E) \leq_c G\}$, the imaginary extension of X
- Sets X^n/E are the sorts of X^{eq}
- $D \subseteq X^n/E$, for X^n/E a sort, is definable on $A \subseteq_{fin} X^{eq}$ if $G_AD = D$ and $Stab(D) \leq_c G$
- $d \in X^{eq}$ is a name for D if $\forall g \in G$ ($gD = D \iff gd = d$)

Proposition. Every definable set in X^{eq} has a name in X^{eq}.
Ranks

Assume \((X, G)\) is a small Polish structure (but in most situations it is enough to ask for the existence of \(nm\)-independent extensions)
Ranks

Assume \((X, G)\) is a small Polish structure (but in most situations it is enough to ask for the existence of \(nm\)-independent extensions)

Definition. \(NM\) is the function from the collection of orbits over finite sets (in \(X\) or \(X^\text{eq}\)) to \(Ord \cup \{\infty\}\),

\[
NM : (a, A) \mapsto NM(a, A) \in Ord \cup \{\infty\}
\]

satisfying

\[
NM(a, A) \geq \alpha + 1 \iff \exists B \supseteq \text{fin} A \ (NM(a, B) \geq \alpha \land \neg a \downarrow^A B)
\]
Assume \((X, G)\) is a small Polish structure (but in most situations it is enough to ask for the existence of \(nm\)-independent extensions).

Definition. \(NM\) is the function from the collection of orbits over finite sets (in \(X\) or \(X^{eq}\)) to \(Ord \cup \{\infty\}\),

\[
NM : (a, A) \mapsto NM(a, A) \in Ord \cup \{\infty\}
\]

satisfying

\[
NM(a, A) \geq \alpha + 1 \iff \exists B \supseteq \text{fin } A (NM(a, B) \geq \alpha \land \nmid a \downarrow_{A} nm B)
\]

Example. \(NM(a, A) = 0 \iff a \in Acl^{eq}(A)\).
Definition. (X, G) is **nm-stable** if every 1-orbit has ordinal rank, i.e. there is no infinite sequence $A_0 \subseteq A_1 \subseteq \ldots \subseteq_{\text{fin}} X$ and $a \in X$ such that a is nm-dependent from A_{i+1} over A_i.
Definition. \((X, G)\) is **nm-stable** if every 1-orbit has ordinal rank, i.e. there is no infinite sequence \(A_0 \subseteq A_1 \subseteq \ldots \subseteq_{\text{fin}} X\) and \(a \in X\) such that \(a\) is nm-dependent from \(A_{i+1}\) over \(A_i\).

Definition. If \(D\) is definable over \(A\) in \(X^{eq}\), the \(\mathcal{NM}\)-rank of \(D\) is

\[
\mathcal{NM}(D) = \sup\{\mathcal{NM}(d, A) \mid d \in D\}
\]
Examples (Krupiński)

- $(S^n, \text{Homeo}(S^n))$ has rank 1
- $((S^1)^n, \text{Homeo}((S^1)^n))$ has rank 1
- $([0, 1]^N, \text{Homeo}([0, 1]^N))$ has rank 1
- if (X, G) has rank 1, then (X^n, G) has rank n
Definitions.

- A *continuum* is a compact connected metric space; it is non-degenerate if it has more than one point.
Definitions.

- A *continuum* is a compact connected metric space; it is non-degenerate if it has more than one point.
- A non-degenerate continuum X is *decomposable* if $X = Y \cup Z$, for Y, Z some proper subcontinua of X. Otherwise it is *indecomposable*.
Continua

Definitions.

- A *continuum* is a compact connected metric space; it is non-degenerate if it has more than one point.
- A non-degenerate continuum X is *decomposable* if $X = Y \cup Z$, for Y, Z some proper subcontinua of X. Otherwise it is *indecomposable*.
- A non-degenerate continuum is hereditarily *(in)decomposable* if all its subcontinua are (in)decomposable.
The pseudo-arc

Definition. The pseudo-arc is the unique continuum that is hereditarily indecomposable and arc-like:

\[\forall \varepsilon, \exists f : P \rightarrow [0, 1] \text{ continuous }, \forall y, \ diam(f^{-1}(y)) < \varepsilon \]

A construction of the pseudoarc:
The pseudo-arc

Definition. The pseudo-arc is the unique continuum that is hereditarily indecomposable and arc-like:

$$\forall \varepsilon, \exists f : P \to [0,1] \text{ continuous }, \forall y, \text{diam}(f^{-1}(y)) < \varepsilon$$

A construction of the pseudoarc:
Fix distinct point $p, q \in \mathbb{R}^2$.
The pseudo-arc

Definition. The pseudo-arc is the unique continuum that is hereditarily indecomposable and arc-like:

\[\forall \varepsilon, \exists f : P \to [0,1] \text{ continuous}, \forall y, \text{diam}(f^{-1}(y)) < \varepsilon \]

A construction of the pseudoarc:
Fix distinct point \(p, q \in \mathbb{R}^2 \).

Step 0 Draw a simple chain \(U_0 = \{ U_{00}, \ldots, U_{0r_0} \} \) from \(p \) to \(q \) of connected open sets of diameter less than 1. Being a simple chain from \(p \) to \(q \) means:

- \(U_i \cap U_j \iff |i - j| \leq 1 \)
- \(p \in U_{0i} \iff i = 0 \)
- \(q \in U_{0i} \iff i = r_0 \)
Step k+1 Draw a simple chain $\mathcal{U}_{k+1} = \{U_{k+1,0}, \ldots, U_{k+1,r_{k+1}}\}$ from p to q of connected open sets of diameter less than $\frac{1}{k+2}$ such that

- the closure of each link of \mathcal{U}_{k+1} is contained in some link of \mathcal{U}_k
Step k+1 Draw a simple chain $\mathcal{U}_{k+1} = \{U_{k+1,0}, \ldots, U_{k+1,r_{k+1}}\}$ from p to q of connected open sets of diameter less than $\frac{1}{k+2}$ such that

- the closure of each link of \mathcal{U}_{k+1} is contained in some link of \mathcal{U}_k
- \mathcal{U}_{k+1} is *crooked* in \mathcal{U}_k
Step $k+1$ Draw a simple chain $\mathcal{U}_{k+1} = \{U_{k+1,0}, \ldots, U_{k+1,r_{k+1}}\}$ from p to q of connected open sets of diameter less than $\frac{1}{k+2}$ such that

- the closure of each link of \mathcal{U}_{k+1} is contained in some link of \mathcal{U}_k
- \mathcal{U}_{k+1} is crooked in \mathcal{U}_k

This last condition means that for all i, j, m, n, if

$$m + 2 < n, \ U_{k+1,i} \cap U_{km} \neq \emptyset, \ U_{k+1,j} \cap U_{kn} \neq \emptyset$$
Step k+1 Draw a simple chain $\mathcal{U}_{k+1} = \{U_{k+1,0}, \ldots, U_{k+1,r_{k+1}}\}$ from p to q of connected open sets of diameter less than $\frac{1}{k+2}$ such that

- the closure of each link of \mathcal{U}_{k+1} is contained in some link of \mathcal{U}_k
- \mathcal{U}_{k+1} is crooked in \mathcal{U}_k

This last condition means that for all i, j, m, n, if

$$m + 2 < n, \quad U_{k+1,i} \cap U_{km} \neq \emptyset, \quad U_{k+1,j} \cap U_{kn} \neq \emptyset$$

then there are s, t with $i < s < t < j$ or $i > t > l > j$ such that

$$U_{k+1,s} \subseteq U_{k,n-1} \text{ and } U_{k+1,t} \subseteq U_{k,m+1}$$
Step $k+1$ Draw a simple chain $\mathcal{U}_{k+1} = \{\mathcal{U}_{k+1,0}, \ldots, \mathcal{U}_{k+1,r_{k+1}}\}$ from p to q of connected open sets of diameter less than $\frac{1}{k+2}$ such that

- the closure of each link of \mathcal{U}_{k+1} is contained in some link of \mathcal{U}_k
- \mathcal{U}_{k+1} is crooked in \mathcal{U}_k

This last condition means that for all i, j, m, n, if

$$m + 2 < n, \quad \mathcal{U}_{k+1,i} \cap \mathcal{U}_{km} \neq \emptyset, \quad \mathcal{U}_{k+1,j} \cap \mathcal{U}_{kn} \neq \emptyset$$

then there are s, t with $i < s < t < j$ or $i > t > l > j$ such that

$$\mathcal{U}_{k+1,s} \subseteq \mathcal{U}_{k,n-1} \text{ and } \mathcal{U}_{k+1,t} \subseteq \mathcal{U}_{k,m+1}$$

Final step $P = \bigcap_{k \in \mathbb{N}} \bigcup \mathcal{U}_k$ is the pseudoarc.
The pseudo-arc is a quite complicated continuum. Nevertheless it is the generic continuum: the class of pseudo-arcs is dense G_δ in the space of all continua.

Theorem. (Krupiński) Let P be the pseudo-arc. Then $(P, \text{Homeo}(P))$ is a small, not nm-stable, Polish structure. In particular, the NM-rank of P is ∞. Moreover P is an example of a small Polish structure not admitting o-independent extensions.
The pseudo-arc is a quite complicated continuum. Nevertheless it is the generic continuum: the class of pseudo-arcs is dense \(G_\delta \) in the space of all continua.

Theorem. (Krupiński) Let \(P \) be the pseudo-arc. Then \((P, \text{Homeo}(P)) \) is a small, not nm-stable, Polish structure.
The pseudo-arc is a quite complicated continuum. Nevertheless it is the generic continuum: the class of pseudo-arcs is dense G_δ in the space of all continua.

Theorem. (Krupiński) Let P be the pseudo-arc. Then $(P, \text{Homeo}(P))$ is a small, not nm-stable, Polish structure.

In particular, the \mathcal{NM}-rank of P is ∞.

Moreover P is an example of a small Polish structure not admitting ω-independent extensions.
Dendrites

Among simplest continua are dendrites.

A **dendrite** is a locally connected continuum that does not contain simple closed curves.
Among simplest continua are dendrites.

A **dendrite** is a locally connected continuum that does not contain simple closed curves.

Definition. Given a point \(x \) in a continuum \(X \), its order \(\text{ord}(x, X) \) is the smallest cardinal \(\beta \) such that \(x \) has a basis of open neighbourhoods whose boundaries have cardinality \(\leq \beta \).
Among simplest continua are dendrites.

A **dendrite** is a locally connected continuum that does not contain simple closed curves.

Definition. Given a point x in a continuum X, its order $\text{ord}(x, X)$ is the smallest cardinal β such that x has a basis of open neighbourhoods whose boundaries have cardinality $\leq \beta$.

All points of a dendrite have order $\leq \aleph_0$. Points of order 1 are called end points; points of order ≥ 3 are branching points.
The following property might help to visualise a dendrite:

If X is a non-degenerate dendrite, then

$$X = \bigcup_{i \in \mathbb{N}} A_i \cup E(X)$$

where:

- each A_i is an arc, with end points p_i, q_i
- $A_{i+1} \cap \bigcup_{j=0}^{i} A_j = \{p_{i+1}\}$
- $\text{diam}(A_i) \to 0$
- $E(X)$ is the set of end points of X
The goal is to study Polish structures of the form $(D, \text{Homeo}(D))$ where D is a dendrite.
The goal is to study Polish structures of the form \((D, \text{Homeo}(D))\) where \(D\) is a dendrite.

Remark. Not all dendrites are small Polish structures. Let \(D \subseteq \mathbb{R}^2\) be obtained by starting with \([0, 1] \times \{0\}\) as follows:
The goal is to study Polish structures of the form \((D, \text{Homeo}(D))\) where \(D\) is a dendrite.

Remark. Not all dendrites are small Polish structures. Let \(D \subseteq \mathbb{R}^2\) be obtained by starting with \([0,1] \times \{0\}\) as follows:

- enumerate \(\{q_n\}_{n \in \mathbb{N}} = (0,1] \cap \mathbb{Q} \times \{0\}\)
- at step \(n\) add \(n\) arcs of diameter \(\leq \frac{1}{2^n}\) intersecting each other and the already achieved construction only in \(q_n\)
The goal is to study Polish structures of the form \((D, \text{Homeo}(D))\) where \(D\) is a dendrite.

Remark. Not all dendrites are small Polish structures. Let \(D \subseteq \mathbb{R}^2\) be obtained by starting with \([0, 1] \times \{0\}\) as follows:

- enumerate \(\{q_n\}_{n \in \mathbb{N}} = ([0, 1] \cap \mathbb{Q}) \times \{0\}\)
- at step \(n\) add \(n\) arcs of diameter \(\leq \frac{1}{2^n}\) intersecting each other and the already achieved construction only in \(q_n\)

Then all point of \([0, 1] \times \{0\}\) are in distinct orbits.
Let $\emptyset \neq J \subseteq \{3, 4 \ldots, \omega\}$.
There is a unique dendrite D_J such that

- each branching point of D_J has order in J
- each subarc of D_J contains points of any order in J
Let $\emptyset \neq J \subseteq \{3, 4, \ldots , \omega\}$.
There is a unique dendrite D_J such that
- each branching point of D_J has order in J
- each subarc of D_J contains points of any order in J

Universality property

D_J is universal for the class of dendrites whose branching points have order in J: any such dendrite embeds in D_J.
Theorem. Each \((D_J, \text{Homeo}(D_J))\) is a small Polish structure of \(\mathcal{NM}\)-rank 1.
Theorem. Each \((D_J, \text{Homeo}(D_J))\) is a small Polish structure of \(\mathcal{NM}\)-rank 1

Conjectures.

- Each dendrite admits \(nm\)-independent extensions
- If \(D\) is a dendrite and \((D, \text{Homeo}(D))\) is small, then \(\mathcal{NM}(D) = 1\)
Some questions.

- Characterise dendrites D such that $(D, \text{Homeo}(D))$ is small.
Some questions.

- Characterise dendrites D such that $(D, \text{Homeo}(D))$ is small.
- Find examples of continua C with $1 < \mathcal{N}\mathcal{M}(C) < \infty$.
Some questions.

- Characterise dendrites D such that $(D, \text{Homeo}(D))$ is small.
- Find examples of continua C with $1 < \mathcal{N}\mathcal{M}(C) < \infty$.
- The $\mathcal{N}\mathcal{M}$-gap conjecture.
An example of a small Polish structure (X, G) with $\mathcal{N}\mathcal{M}(X) = \omega$ can be obtained as a disjoint sum of small Polish structures of increasing natural rank.
E.g., take (Y, G) of rank 1 and let $X = \bigcup_{n \geq 1} X^n$.

However, in this example there is no single orbit over finite sets with rank $\geq \omega$ (and $\neq \infty$).

The $\mathcal{N}\mathcal{M}$-gap conjecture.
Let (X, G) be a small Polish structure. Then, for any orbit o of a finite set $A \subseteq X$, one has $\mathcal{N}\mathcal{M}(o) \in \omega \cup \{\infty\}$.
This conjecture is open in the class of small profinite structures; it has been proved for small m-stable profinite groups. In this wider context it might be easier to find a counterexample.
An example of a small Polish structure \((X, G)\) with \(NM(X) = \omega\) can be obtained as a disjoint sum of small Polish structures of increasing natural rank.
E.g., take \((Y, G)\) of rank 1 an let \(X = \bigcup_{n \geq 1} X^n\).

However, in this example there is no single orbit over finite sets with rank \(\geq \omega\) (and \(\neq \infty\)).
An example of a small Polish structure \((X, G)\) with \(\mathcal{NM}(X) = \omega\) can be obtained as a disjoint sum of small Polish structures of increasing natural rank. E.g., take \((Y, G)\) of rank 1 and let \(X = \bigcup_{n \geq 1} X^n\).

However, in this example there is no single orbit over finite sets with rank \(\geq \omega\) (and \(\neq \infty\)).

The \(\mathcal{NM}\)-gap conjecture. Let \((X, G)\) be a small Polish structure. Then, for any orbit \(o\) of a finite set \(A \subseteq X\), one has

\[
\mathcal{NM}(o) \in \omega \cup \{\infty\}.
\]
An example of a small Polish structure \((X, G)\) with \(\mathcal{NM}(X) = \omega\) can be obtained as a disjoint sum of small Polish structures of increasing natural rank.

E.g., take \((Y, G)\) of rank 1 and let \(X = \bigcup_{n \geq 1} X^n\).

However, in this example there is no single orbit over finite sets with rank \(\geq \omega\) (and \(\neq \infty\)).

The \(\mathcal{NM}\)-gap conjecture. Let \((X, G)\) be a small Polish structure. Then, for any orbit \(o\) of a finite set \(A \subseteq X\), one has

\[
\mathcal{NM}(o) \in \omega \cup \{\infty\}.
\]

This conjecture is open in the class of small profinite structures; it has been proved for small \(m\)-stable profinite groups. In this wider context it might be easier to find a counterexample.