Well quasi-orders, better quasi-orders, and classification problems in descriptive set theory
Descriptive set theory (DST) was founded by people like Baire, Borel, Lebesgue, Luzin, Suslin, Sierpinski and others in the first two decades of the XXth century. **Scope:** the study of the descriptive complexity of sets of real numbers.
Descriptive set theory (DST) was founded by people like Baire, Borel, Lebesgue, Luzin, Suslin, Sierpinski and others in the first two decades of the XXth century. **Scope:** the study of the descriptive complexity of *sets* of real numbers.

In the last few decades, there has been a lot of work to investigate the complexity of *relations* between real numbers, or elements of other standard Borel spaces.
Descriptive set theory (DST) was founded by people like Baire, Borel, Lebesgue, Luzin, Suslin, Sierpinski and others in the first two decades of the XXth century. **Scope:** the study of the descriptive complexity of sets of real numbers.

In the last few decades, there has been a lot of work to investigate the complexity of relations between real numbers, or elements of other standard Borel spaces.

Somehow vague questions:

- Are there any interesting relations — from the point of view of DST — that turn out to be wqo?
- Where do they come out?
- What can be said about their complexity?
Scope of the talk

I will mainly concentrate on the second question: I will present a new (surprisingly easy) example of a bqo that arose studying relations from a DST perspective, and discuss some problem that stem from it.
A quick review of DST

Let X be a topological space.
A quick review of DST

Let X be a topological space. Define the Borel hierarchy by induction on $1 \leq \alpha < \omega_1$:

- $\Sigma^0_1(X) =$ the family of all open subsets of X
Let X be a topological space. Define the Borel hierarchy by induction on $1 \leq \alpha < \omega_1$:

- $\Sigma_1^0(X) =$ the family of all open subsets of X
- $\Pi_\alpha^0(X) = \{ X \setminus A \}_{A \in \Sigma_\alpha^0(X)}$
A quick review of DST

Let X be a topological space. Define the Borel hierarchy by induction on $1 \leq \alpha < \omega_1$:

- $\Sigma^0_1(X) =$ the family of all open subsets of X
- $\Pi^0_\alpha(X) = \{X \setminus A\}_{A \in \Sigma^0_\alpha(X)}$
- $\Sigma^0_\alpha(X) = \bigcup_{n \in \mathbb{N}} C_n$, where $C_n \in \Pi^0_{\beta_n}, \beta_n < \alpha$, for $\alpha \geq 2$
A quick review of DST

Let X be a topological space. Define the Borel hierarchy by induction on $1 \leq \alpha < \omega_1$:

- $\Sigma^0_1(X)$ = the family of all open subsets of X
- $\Pi^0_\alpha(X) = \{X \setminus A\}_{A \in \Sigma^0_\alpha(X)}$
- $\Sigma^0_\alpha(X) = \bigcup_{n \in \mathbb{N}} C_n$, where $C_n \in \Pi^0_{\beta_n}, \beta_n < \alpha$, for $\alpha \geq 2$
- $\Delta^0_\alpha(X) = \Sigma^0_\alpha(X) \cap \Pi^0_\alpha(X)$

$B(X)$ is the σ-algebra of Borel subsets of X.

A function $f: X \to Y$ between topological spaces is Borel if $\forall B \in B(X) f^{-1}(B) \in B(Y)$ or, equivalently, $\forall B \in \Sigma^0_1(Y) f^{-1}(B) \in B(X)$.
A quick review of DST

Let X be a topological space. Define the Borel hierarchy by induction on $1 \leq \alpha < \omega_1$:

- $\Sigma^0_1(X) = \text{the family of all open subsets of } X$
- $\Pi^0_\alpha(X) = \{X \setminus A\}_{A \in \Sigma^0_\alpha(X)}$
- $\Sigma^0_\alpha(X) = \bigcup_{n \in \mathbb{N}} C_n$, where $C_n \in \Pi^0_{\beta_n}, \beta_n < \alpha$, for $\alpha \geq 2$
- $\Delta^0_\alpha(X) = \Sigma^0_\alpha(X) \cap \Pi^0_\alpha(X)$
- $B(X) = \bigcup_{\alpha \in \omega_1} \Sigma^0_\alpha(X) = \bigcup_{\alpha \in \omega_1} \Pi^0_\alpha(X) = \bigcup_{\alpha \in \omega_1} \Delta^0_\alpha(X)$
Let X be a topological space. Define the Borel hierarchy by induction on $1 \leq \alpha < \omega_1$:

- $\Sigma^0_1(X) = \text{the family of all open subsets of } X$
- $\Pi^0_\alpha(X) = \{X \setminus A\}_{A \in \Sigma^0_\alpha(X)}$
- $\Sigma^0_\alpha(X) = \bigcup_{n \in \mathbb{N}} C_n$, where $C_n \in \Pi^0_{\beta_n}$, $\beta_n < \alpha$, for $\alpha \geq 2$
- $\Delta^0_\alpha(X) = \Sigma^0_\alpha(X) \cap \Pi^0_\alpha(X)$
- $\mathcal{B}(X) = \bigcup_{\alpha \in \omega_1} \Sigma^0_\alpha(X) = \bigcup_{\alpha \in \omega_1} \Pi^0_\alpha(X) = \bigcup_{\alpha \in \omega_1} \Delta^0_\alpha(X)$

$\mathcal{B}(X)$ is the σ-algebra of Borel subsets of X.

A quick review of DST
A quick review of DST

Let X be a topological space. Define the Borel hierarchy by induction on $1 \leq \alpha < \omega_1$:

- $\Sigma^0_1(X) = \text{the family of all open subsets of } X$
- $\Pi^0_\alpha(X) = \{X \setminus A\}_{A \in \Sigma^0_\alpha(X)}$
- $\Sigma^0_\alpha(X) = \bigcup_{n \in \mathbb{N}} C_n$, where $C_n \in \Pi^0_\beta, \beta < \alpha$, for $\alpha \geq 2$
- $\Delta^0_\alpha(X) = \Sigma^0_\alpha(X) \cap \Pi^0_\alpha(X)$
- $\mathcal{B}(X) = \bigcup_{\alpha \in \omega_1} \Sigma^0_\alpha(X) = \bigcup_{\alpha \in \omega_1} \Pi^0_\alpha(X) = \bigcup_{\alpha \in \omega_1} \Delta^0_\alpha(X)$

$\mathcal{B}(X)$ is the σ-algebra of Borel subsets of X. A function $f : X \to Y$ between topological spaces is Borel if

$$\forall B \in \mathcal{B}(X) \ f^{-1}(B) \in \mathcal{B}(Y)$$

or, equivalently,

$$\forall B \in \Sigma^0_1(Y) \ f^{-1}(B) \in \mathcal{B}(X)$$
Polish and standard Borel spaces

A topological space is *Polish* if it is separable and completely metrisable.
Polish and standard Borel spaces

A topological space is *Polish* if it is separable and completely metrisable. For a Polish space X, the Borel hierarchy is increasing:

$$\forall \alpha, \beta \in \omega_1 \ (\alpha < \beta \Rightarrow \Sigma^0_\alpha(X) \cup \Pi^0_\alpha(X) \subseteq \Delta^0_\beta(X))$$
A topological space is *Polish* if it is separable and completely metrisable. For a Polish space X, the Borel hierarchy is increasing:

$$\forall \alpha, \beta \in \omega_1 \ (\alpha < \beta \Rightarrow \Sigma^0_\alpha(X) \cup \Pi^0_\alpha(X) \subseteq \Delta^0_\beta(X))$$

A *standard Borel space* is a set X endowed with a σ-algebra $\mathcal{B}(X)$ that is the σ-algebra of Borel sets for some Polish topology on X.
A topological space is *Polish* if it is separable and completely metrisable. For a Polish space X, the Borel hierarchy is increasing:

$$\forall \alpha, \beta \in \omega_1 (\alpha < \beta \Rightarrow \Sigma^0_\alpha(X) \cup \Pi^0_\alpha(X) \subseteq \Delta^0_\beta(X))$$

A *standard Borel space* is a set X endowed with a σ-algebra $\mathcal{B}(X)$ that is the σ-algebra of Borel sets for some Polish topology on X.

If X is standard Borel and $A \in \mathcal{B}(X)$, then A, with the induced σ-algebra, is standard Borel as well.
A subset A of a standard Borel space X is *analytic* (or Σ^1_1) if there are a standard Borel space Y and a Borel function $f : Y \to X$ such that $A = im f$.
A subset A of a standard Borel space X is *analytic* (or Σ^1_1) if there are a standard Borel space Y and a Borel function $f : Y \to X$ such that $A = imf$.

Given the class Σ^1_n, let

- $\Pi^1_n(X) = \{ A \subseteq X \mid X \setminus A \in \Sigma^1_n(X) \}$
A subset A of a standard Borel space X is analytic (or Σ^1_1) if there are a standard Borel space Y and a Borel function $f : Y \to X$ such that $A = \text{im} f$.

Given the class Σ^1_n, let

- $\Pi^1_n(X) = \{ A \subseteq X \mid X \setminus A \in \Sigma^1_n(X) \}$
- $\Sigma^1_{n+1}(X) = \{ A \subseteq X \mid \exists Y \text{ standard Borel}, f : Y \to X \text{ Borel}, B \in \Pi^1_n(X) A = f(B) \}$
A subset A of a standard Borel space X is analytic (or Σ^1_1) if there are a standard Borel space Y and a Borel function $f : Y \to X$ such that $A = \text{im } f$.

Given the class Σ^1_n, let

- $\Pi^1_n(X) = \{ A \subseteq X \mid X \setminus A \in \Sigma^1_n(X) \}$
- $\Sigma^1_{n+1}(X) = \{ A \subseteq X \mid \exists Y \text{ standard Borel, } f : Y \to X \text{ Borel, } B \in \Pi^1_n(X) \ A = f(B) \}$
- $\Delta^1_n(X) = \Sigma^1_n(X) \cap \Pi^1_n(X)$
A motivating example

A great amount of classes of mathematical objects can be given a natural standard Borel structure. Moreover, usual manipulations of such objects turn out to be Borel functions.
A motivating example

A great amount of classes of mathematical objects can be given a natural standard Borel structure. Moreover, usual manipulations of such objects turn out to be Borel functions.

Example. Let $L = \{R_i, f_j, c_k \mid i \in I, j \in J, k \in K\}$ be a countable first-order language.
A motivating example

A great amount of classes of mathematical objects can be given a natural standard Borel structure. Moreover, usual manipulations of such objects turn out to be Borel functions.

Example. Let $L = \{ R_i, f_j, c_k \mid i \in I, j \in J, k \in K \}$ be a countable first-order language. If A is a countable set (usually $A = \mathbb{N}$), the set of L-structures with universe A is (coded by) some element

$$ x \in \prod_{i \in I} 2^{A^{ar(i)}} \times \prod_{j \in J} A^{A^{ar(j)}} \times A^K = X_L $$
A motivating example

A great amount of classes of mathematical objects can be given a natural standard Borel structure. Moreover, usual manipulations of such objects turn out to be Borel functions.

Example. Let \(L = \{ R_i, f_j, c_k \mid i \in I, j \in J, k \in K \} \) be a countable first-order language. If \(A \) is a countable set (usually \(A = \mathbb{N} \)), the set of \(L \)-structures with universe \(A \) is (coded by) some element

\[
\times \in \prod_{i \in I} 2^{A^{ar(i)}} \times \prod_{j \in J} A^{A^{ar(j)}} \times A^K = X_L
\]

\(X_L \) is a Polish space under the product topology.
A motivating example

The Polish group $\text{Sym}(A)$ acts on X_L by the logic action: for $g \in \text{Sym}(A), x \in X_L$, the model gx is obtained from model x by permutating the elements of A by g.

Theorem. (Lopez-Escobar) The Borel subsets of X_L that are invariant under the logic action are exactly the sets of the form $B_\phi = \{ x \in X_L | x | = \phi \}$ for some $L_{\omega_1^{\omega}}$-sentence ϕ.

Example. Let $L = \{ \leq \}$, where \leq is a binary relation symbol, so that $X_L = 2^{2^\mathbb{N}}$. Let ϕ be an axiom for linear orders. Then $\text{LO} = \{ x \in X_L | x | = \phi \}$ is a Borel (actually closed) subset of X_L.
A motivating example

The Polish group $\text{Sym}(A)$ acts on X_L by the logic action: for $g \in \text{Sym}(A), x \in X_L$, the model gx is obtained from model x by permutating the elements of A by g.

Theorem. (Lopez-Escobar) The Borel subsets of X_L that are invariant under the logic action are exactly the sets of the form

$$B_\varphi = \{x \in X_L \mid x \models \varphi\}$$

for some $L_{\omega_1\omega}$-sentence φ.

A motivating example

The Polish group $\text{Sym}(A)$ acts on X_L by the logic action: for $g \in \text{Sym}(A), x \in X_L$, the model gx is obtained from model x by permutating the elements of A by g.

Theorem. (Lopez-Escobar) The Borel subsets of X_L that are invariant under the logic action are exactly the sets of the form

$$B_\varphi = \{ x \in X_L \mid x \models \varphi \}$$

for some $L_{\omega_1\omega}$-sentence φ.

Example. Let $L = \{\leq\}$, where \leq is a binary relation symbol, so that $X_L = 2^{\mathbb{N}^2}$.
A motivating example

The Polish group $\text{Sym}(A)$ acts on X_L by the logic action: for $g \in \text{Sym}(A), x \in X_L$, the model $g x$ is obtained from model x by permutating the elements of A by g.

Theorem. (Lopez-Escobar) The Borel subsets of X_L that are invariant under the logic action are exactly the sets of the form

$$B_\varphi = \{x \in X_L \mid x \models \varphi\}$$

for some $L_{\omega_1\omega}$-sentence φ.

Example. Let $L = \{\leq\}$, where \leq is a binary relation symbol, so that $X_L = 2^{\mathbb{N}^2}$. Let φ be an axiom for linear orders.
A motivating example

The Polish group $\text{Sym}(A)$ acts on X_L by the logic action: for $g \in \text{Sym}(A), x \in X_L$, the model gx is obtained from model x by permutating the elements of A by g.

Theorem. (Lopez-Escobar) The Borel subsets of X_L that are invariant under the logic action are exactly the sets of the form

$$B_\varphi = \{x \in X_L \mid x \models \varphi\}$$

for some $L_{\omega_1\omega}$-sentence φ.

Example. Let $L = \{\leq\}$, where \leq is a binary relation symbol, so that $X_L = 2^{\mathbb{N}^2}$. Let φ be an axiom for linear orders. Then

$$LO = \{x \in X_L \mid x \models \varphi\}$$

is a Borel (actually closed) subset of X_L.
Let E, F be n-ary relations on standard Borel spaces X, Y, respectively.
Borel reducibility

Let E, F be n-ary relations on standard Borel spaces X, Y, respectively. Then E is *Borel reducible* to F, denoted

$$E \leq_B F$$

if there is a Borel function $f : X \to Y$ such that

$$\forall x_1, \ldots, x_n \in X \ (E(x_1, \ldots, x_n) \Leftrightarrow F(f(x_1), \ldots, f(x_n)))$$

Main examples for classes of countable structures:

Analytic equivalence relations, like isomorphism or bi-embeddability in some classes of countable structures. Analytic quasi-orders, like embeddability.
Borel reducibility

Let E, F be n-ary relations on standard Borel spaces X, Y, respectively. Then E is *Borel reducible* to F, denoted

$$E \leq_B F$$

if there is a Borel function $f : X \rightarrow Y$ such that

$$\forall x_1, \ldots, x_n \in X \ (E(x_1, \ldots, x_n) \iff F(f(x_1), \ldots, f(x_n)))$$

Main examples for classes of countable structures: Analytic equivalence relations, like isomorphism or bi-embeddability in some classes of countable structures. Analytic quasi-orders, like embeddability.
If \mathcal{R} is a class of relations on standard Borel spaces, then a relation F is \mathcal{R}-complete if

1. $F \in \mathcal{R}$
2. $\forall E \in \mathcal{R} \; E \leq_B F$
Completeness

If \(\mathcal{R} \) is a class of relations on standard Borel spaces, then a relation \(F \) is \(\mathcal{R} \)-complete if

1. \(F \in \mathcal{R} \)
2. \(\forall E \in \mathcal{R} \ E \leq_B F \)

Questions:

- Does \(\mathcal{R} \) admit complete elements? Who are them?
Completeness

If \(\mathcal{R} \) is a class of relations on standard Borel spaces, then a relation \(F \) is \(\mathcal{R} \)-complete if

1. \(F \in \mathcal{R} \)
2. \(\forall E \in \mathcal{R} \ E \leq_B F \)

Questions:

- Does \(\mathcal{R} \) admit complete elements? Who are them?
- What is the complexity, both in the Borel hierarchy and w.r.t. \(\leq_B \), of the elements of \(\mathcal{R} \)?
Several classes of relations have been proven to admit complete elements.

Examples:

- **Borel equivalence relations with at most countable classes.** A complete element is the orbit equivalence relation of F_2 on 2^{F_2}.
- **Isomorphism relations for countable structures.** A complete element is isomorphism on countable graphs.
- **Analytic quasi-orders.** A complete element is embeddability on countable graphs.
- **Analytic equivalence relations.** A complete element is bi-embeddability on countable graphs.

Remark. An R-complete relation must be sufficiently complex both w.r.t. the projective hierarchy and combinatorially, since it Borel embeds every element of R. In particular, a wqo cannot be R-complete, unless all elements of R are wqo's.
Several classes of relations have been proven to admit complete elements. **Examples:**

- Borel equivalence relations with at most countable classes. A complete element is the orbit equivalence relation of F_2 on 2^{F_2}.
- Isomorphism relations for countable structures. A complete element is isomorphism on countable graphs.
- Analytic quasi-orders. A complete element is embeddability on countable graphs.
- Analytic equivalence relations. A complete element is bi-embeddability on countable graphs.

Remark. An R-complete relation must be sufficiently complex both w.r.t. the projective hierarchy and combinatorially, since it Borel embeds every element of R. In particular, a wqo cannot be R-complete, unless all elements of R are wqo’s.
Completeness

Several classes of relations have been proven to admit complete elements. Examples:

- Borel equivalence relations with at most countable classes. A complete element is the orbit equivalence relation of F_2 on 2^{F_2}.
- Isomorphism relations for countable structures. A complete element is isomorphism on countable graphs.
Several classes of relations have been proven to admit complete elements.

Examples:

- **Borel equivalence relations** with at most countable classes. A complete element is the orbit equivalence relation of F_2 on 2^{F_2}.
- **Isomorphism relations** for countable structures. A complete element is isomorphism on countable graphs.
- **Analytic quasi-orders**. A complete element is embeddability on countable graphs.

Remark. An R-complete relation must be sufficiently complex both w.r.t. the projective hierarchy and combinatorially, since it Borel embeds every element of R. In particular, a wqo cannot be R-complete, unless all elements of R are wqo's.
Completeness

Several classes of relations have been proven to admit complete elements. **Examples:**

- Borel equivalence relations with at most countable classes. A complete element is the orbit equivalence relation of F_2 on 2^{F_2}.
- Isomorphism relations for countable structures. A complete element is isomorphism on countable graphs.
- Analytic quasi-orders. A complete element is embeddability on countable graphs.
- Analytic equivalence relations. A complete element is bi-embeddability on countable graphs.

Remark. An \mathcal{R}-complete relation must be sufficiently complex both w.r.t. the projective hierarchy and combinatorially, since it Borel embeds every element of \mathcal{R}.
Several classes of relations have been proven to admit complete elements.

Examples:

- Borel equivalence relations with at most countable classes. A complete element is the orbit equivalence relation of F_2 on 2^{F_2}.
- Isomorphism relations for countable structures. A complete element is isomorphism on countable graphs.
- Analytic quasi-orders. A complete element is embeddability on countable graphs.
- Analytic equivalence relations. A complete element is bi-embeddability on countable graphs.

Remark. An \mathcal{R}-complete relation must be sufficiently complex both w.r.t. the projective hierarchy and combinatorially, since it Borel embeds every element of \mathcal{R}. In particular, a wqo cannot be \mathcal{R}-complete, unless all elements of \mathcal{R} are wqo’s.
In the space LO several relations of interest are defined.
In the space LO several relations of interest are defined.

1. **Isomorphism**
Relations on countable linear orders

In the space LO several relations of interest are defined.

1. **Isomorphism**

Theorem. (Friedman, Stanley, 1989) The relation of isomorphism on countable linear orders is complete for the class of isomorphism relations on countable structures.
In the space LO several relations of interest are defined.

1. **Isomorphism**

Theorem. (Friedman, Stanley, 1989) The relation of isomorphism on countable linear orders is complete for the class of isomorphism relations on countable structures.

2. **Recursive isomorphism**
In the space LO several relations of interest are defined.

1. **Isomorphism**

 Theorem. (Friedman, Stanley, 1989) The relation of isomorphism on countable linear orders is complete for the class of isomorphism relations on countable structures.

2. **Recursive isomorphism**

 Theorem. (C., 2002) The relation of recursive isomorphism on countable linear orders is complete for Borel equivalence relations with at most countable classes.
3. Embeddability

Theorem. (Laver, 1971) The relation of embeddability on countable linear orders (in fact on σ-scattered ones) is a bqo.

The results proved by Laver and by van Engelen, Miller, Steel, 1987) are actually stronger.

Denote by \leq_c the relation of continuous order preserving embeddability between linear orders.

Theorem. The relation \leq_c on countable linear orders is a bqo.
Relations on countable linear orders

3. Embeddability

The relation on embeddability \leq_i on LO is an analytic, non-Borel, quasi-order.
3. Embeddability

The relation on embeddability \leq_i on LO is an analytic, non-Borel, quasi-order. However, it is very far from being complete in this class.

Theorem. (Laver, 1971) The relation of embeddability on countable linear orders (in fact on σ-scattered ones) is a b.q.o.
3. **Embeddability**

The relation on embeddability \leq_i on LO is an analytic, non-Borel, quasi-order. However, it is very far from being complete in this class.

Theorem. (Laver, 1971) The relation of embeddability on countable linear orders (in fact on σ-scattered ones) is a bqo.

4. **Continuous embeddability**
3. Embeddability

The relation on embeddability \(\leq_i \) on \(LO \) is an analytic, non-Borel, quasi-order. However, it is very far from being complete in this class.

Theorem. (Laver, 1971) The relation of embeddability on countable linear orders (in fact on \(\sigma \)-scattered ones) is a bqo.

4. Continuous embeddability

Denote by \(\leq_c \) the relation of continuous order preserving embeddability between linear orders.

Theorem. (van Engelen, Miller, Steel, 1987) The relation \(\leq_c \) on countable linear orders is a bqo.
3. **Embeddability**

The relation on embeddability \leq_i on LO is an analytic, non-Borel, quasi-order. However, it is very far from being complete in this class.

Theorem. (Laver, 1971) The relation of embeddability on countable linear orders (in fact on σ-scattered ones) is a bqo.

4. **Continuous embeddability**

Denote by \leq_c the relation of continuous order preserving embeddability between linear orders.

Theorem. (van Engelen, Miller, Steel, 1987) The relation \leq_c on countable linear orders is a bqo.

The results proved by Laver and by van Engelen, Miller, and Steel are actually actually stronger.
Preserving bqo’s

Definition. (Louveau, Saint Raymond, 1990) Let C be a class of structures with morphisms between them, such that the identities are C-morphisms, and C-morphisms are closed under composition.
Definition. (Louveau, Saint Raymond, 1990) Let C be a class of structures with morphisms between them, such that the identities are C-morphisms, and C-morphisms are closed under composition. Given a quasi-order Q, let

$$Q^C = \{ f : \text{dom}f \to Q \mid \text{dom}f \in C \}$$
Preserving bqo’s

Definition. (Louveau, Saint Raymond, 1990) Let \mathcal{C} be a class of structures with morphisms between them, such that the identities are \mathcal{C}-morphisms, and \mathcal{C}-morphisms are closed under composition. Given a quasi-order Q, let

$$Q^\mathcal{C} = \{ f : \text{dom} f \to Q \mid \text{dom} f \in \mathcal{C} \}$$

quasi-ordered by

$$f_0 \leq f_1 \iff \exists g : \text{dom} f_0 \to \text{dom} f_1 \text{ a } \mathcal{C} \text{-morphism}$$

$$\forall x \in \text{dom} f_0 \ f_0(x) \leq Q f_1 g(x)$$
Preserving bqo’s

Definition. (Louveau, Saint Raymond, 1990) Let C be a class of structures with morphisms between them, such that the identities are C-morphisms, and C-morphisms are closed under composition. Given a quasi-order Q, let

$$Q^C = \{ f : \text{dom} f \to Q \mid \text{dom} f \in C \}$$

quasi-ordered by

$$f_0 \leq f_1 \iff \exists g : \text{dom} f_0 \to \text{dom} f_1 \text{ a } C\text{-morphism} \forall x \in \text{dom} f_0 \ f_0(x) \leq_Q f_1 g(x)$$

Class C preserves bqo’s if whenever Q is a bqo, then Q^C is bqo as well.
Preserving bqo’s

Theorem. (Laver, 1971) The class of \(\sigma\)-scattered linear orders under \(\leq_i\) preserves bqo’s.

Theorem. (van Engelen, Miller, Steel, 1987) The class of countable linear orders under \(\leq_c\) preserve bqo’s.
5. Epimorphisms
5. **Epimorphisms** (Carroy, Marcone, C., in progress)
5. **Epimorphisms** (Carroy, Marcone, C., in progress)

Given linear orders L, K, let $K \leq_s L$ if there is an order preserving surjection $f : L \rightarrow K$:

$$\forall x, y \in L \ (x \leq_L y \Rightarrow g(x) \leq_K g(y))$$
5. Epimorphisms (Carroy, Marcone, C., in progress)

Given linear orders L, K, let $K \leq_s L$ if there is an order preserving surjection $f : L \to K$:

$$\forall x, y \in L \ (x \leq_L y \Rightarrow g(x) \leq_K g(y))$$

The restriction of \leq_s to LO is an analytic quasi-order.
Some easy remarks:

- If \(f: L \to K \) witnesses \(K \leq_s L \), then \(f \) has a right inverse \(g: K \to L \) witnessing \(K \leq_i L \). So \(\leq_s \subseteq \leq_i \).

- The converse does not hold, e.g., \(\omega, \omega + 1 \).

- \(K \leq_s L \) if and only if \(L = \sum_{i \in K} L_i \).

- If \(L \) has a minimum (or a maximum), while \(K \) does not, then \(K \not\leq L \).

- If \(K, L \) do not have maximum and \(K \leq_s L \), then \(\text{cof}(K) = \text{cof}(L) \).

Similarly for orders without minimum.

As a first consequence, an analogous of Laver's result cannot hold for \(\leq_s \): if \(\kappa, \lambda \) are distinct infinite cardinals, they are incomparable under \(\leq_s \).
Some easy remarks:

- If $f : L \to K$ witnesses $K \leq_s L$, then f has a right inverse $g : K \to L$ witnessing $K \leq_i L$. So $\leq_s \subseteq \leq_i$.

- The converse does not hold, e.g., $\omega, \omega + 1$.

- $K \leq_s L$ if and only if $L = \sum_{i \in K} L^i$.

- If L has a minimum (or a maximum), while K does not, then $K \not\leq L$.

- If K, L do not have maximum and $K \leq_s L$, then $\text{cof}(K) = \text{cof}(L)$.

Similarly for orders without minimum.

As a first consequence, an analogous of Laver's result cannot hold for \leq_s: if κ, λ are distinct infinite cardinals, they are incomparable under \leq_s.
Some easy remarks:

- If $f : L \to K$ witnesses $K \leq_s L$, then f has a right inverse $g : K \to L$ witnessing $K \leq_i L$. So $\leq_s \subseteq \leq_i$. The converse does not hold, e.g., $\omega, \omega + 1$.

As a first consequence, an analogous of Laver's result cannot hold for \leq_s:

- If κ, λ are distinct infinite cardinals, they are incomparable under \leq_s.

Epimorphisms on linear orders

Some easy remarks:

- If $f : L \to K$ witnesses $K \leq_s L$, then f has a right inverse $g : K \to L$ witnessing $K \leq_i L$. So $\leq_s \subseteq \leq_i$. The converse does not hold, e.g., $\omega, \omega + 1$.

- $K \leq_s L$ if and only if $L = \sum_{i \in K} L_i$.
Some easy remarks:

- If \(f : L \to K \) witnesses \(K \leq_s L \), then \(f \) has a right inverse \(g : K \to L \) witnessing \(K \leq_i L \). So \(\leq_s \subseteq \leq_i \). The converse does not hold, e.g., \(\omega, \omega + 1 \).
- \(K \leq_s L \) if and only if \(L = \sum_{i \in K} L_i \).
- If \(L \) has a minimum (or a maximum), while \(K \) does not, then \(K \not\leq L \).
Some easy remarks:

- If \(f : L \to K \) witnesses \(K \leq_s L \), then \(f \) has a right inverse \(g : K \to L \) witnessing \(K \leq_i L \). So \(\leq_s \subseteq \leq_i \). The converse does not hold, e.g., \(\omega, \omega + 1 \).
- \(K \leq_s L \) if and only if \(L = \sum_{i \in K} L_i \).
- If \(L \) has a minimum (or a maximum), while \(K \) does not, then \(K \not\leq L \).
- If \(K, L \) do not have maximum and \(K \leq_s L \), then \(\text{cof}(K) = \text{cof}(L) \). Similarly for orders without minimum.
Some easy remarks:

- If $f : L \to K$ witnesses $K \leq_s L$, then f has a right inverse $g : K \to L$ witnessing $K \leq_i L$. So $\leq_s \subseteq \leq_i$. The converse does not hold, e.g., $\omega, \omega + 1$.

- $K \leq_s L$ if and only if $L = \sum_{i \in K} L_i$.

- If L has a minimum (or a maximum), while K does not, then $K \nleq L$.

- If K, L do not have maximum and $K \leq_s L$, then $\text{cof}(K) = \text{cof}(L)$. Similarly for orders without minimum.

As a first consequence, an analogous of Laver’s result cannot hold for \leq_s: if κ, λ are distinct infinite cardinals, they are incomparable under \leq_s.

Lemma
If K has minimum, maximum, and it is complete, then for any order L,

$$K \leq_i L \Rightarrow K \leq_s L$$

Proof.
The bqo \leq_s on countable orders

Lemma
If K has minimum, maximum, and it is complete, then for any order L,

$$K \leq_i L \Rightarrow K \leq_s L$$

Proof.
If $f : K \leq_i L$ and $a = \min K$, define $g : L \to K$ by

$$g(y) = \begin{cases}
 a & \text{if } y < f(a) \\
 \sup \{ x \in K \mid f(x) \leq y \} & \text{if } y \geq f(a)
\end{cases}$$

\qed
The bqo \leq_s on countable orders

Lemma

If K has minimum, maximum, and it is complete, then for any order L,

$$K \leq_i L \Rightarrow K \leq_s L$$

Proof.

If $f : K \leq_i L$ and $a = \min K$, define $g : L \rightarrow K$ by

$$g(y) = \begin{cases}
 a & \text{if } y < f(a) \\
 \sup \{ x \in K \mid f(x) \leq y \} & \text{if } y \geq f(a)
\end{cases}$$

Corollary

\leq_s is a bqo on countable complete linear orders with maximum and minimum.
The bqo \leq_s on countable orders

Let LIN_3 be the class of all linear orders coloured in three colours: an element of LIN_3 is a linear order L together with a function $c : L \to 3$.
Let LIN_3 be the class of all linear orders coloured in three colours: an element of LIN_3 is a linear order L together with a function $c : L \rightarrow 3$.

LIN_3 can be quasi-ordered as follows: given

$$K = (K, c), L = (L, c') \in LIN_3$$

set

$$(K, c) \leq_{col} (L, c') \iff \exists f : K \rightarrow L \text{ injective, order preserving, continuous, and such that } \forall x \in K c(x) = c' f(x)$$

So (LIN_3, \leq_{col}) is a bqo on the subclass of LIN_3 consisting of countable orders.
The bqo \leq_s on countable orders

Let LIN_3 be the class of all linear orders coloured in three colours: an element of LIN_3 is a linear order L together with a function $c : L \to 3$.

LIN_3 can be quasi-ordered as follows: given

$$K = (K, c), L = (L, c') \in \text{LIN}_3$$

set

$$(K, c) \leq_{col} (L, c') \iff \exists f : K \to L \text{ injective, order preserving, continuous,}$$
$$\text{and such that } \forall x \in K \ c(x) = c'f(x)$$

So $(\text{LIN}_3, \leq_{col})$ is $3^{(\text{LIN}, \leq_c)}$ in the notation of Louveau and Saint Raymond.
The \(\leq_s \) on countable orders

Let \(LIN_3 \) be the class of all linear orders coloured in three colours: an element of \(LIN_3 \) is a linear order \(L \) together with a function \(c : L \to 3 \).

\(LIN_3 \) can be quasi-ordered as follows: given

\[K = (K, c), L = (L, c') \in LIN_3 \]

set

\[(K, c) \leq_{col} (L, c') \iff \exists f : K \to L \text{ injective, order preserving, continuous, and such that } \forall x \in K \ c(x) = c' f(x) \]

So \((LIN_3, \leq_{col}) \) is \(3^{(LIN, \leq_c)} \) in the notation of Louveau and Saint Raymond.

By the theorem of van Engelen, Miller, Steel, \(\leq_{col} \) is a bqo on the subclass of \(LIN_3 \) consisting of countable orders.
Given a linear order L let its closure \bar{L} be defined by completing L and then possibly adding a first or a last element, in case L does not have them.
The b.qo \leq_s on countable orders

Given a linear order L let its closure \bar{L} be defined by completing L and then possibly adding a first or a last element, in case L does not have them. The complete colouring of L is the map $c_L : \bar{L} \rightarrow 3$ defined by

$$c_L(x) = \begin{cases}
2 & \text{if } x \in L \\
1 & \text{if } x \in \{\min \bar{L}, \max \bar{L}\} \text{ and } x \notin L \\
0 & \text{otherwise}
\end{cases}$$
The bqo \leq_s on countable orders

Given a linear order L let its *closure* \bar{L} be defined by completing L and then possibly adding a first or a last element, in case L does not have them. The *complete colouring* of L is the map $c_L : \bar{L} \rightarrow 3$ defined by

$$c_L(x) = \begin{cases} 2 & \text{if } x \in L \\ 1 & \text{if } x \in \{ \min \bar{L}, \max \bar{L} \} \text{ and } x \notin L \\ 0 & \text{otherwise} \end{cases}$$

So $(\bar{L}, c_L) \in LIN_3$.
The bqo \leq_s on countable orders

Given a linear order L let its closure \bar{L} be defined by completing L and then possibly adding a first or a last element, in case L does not have them. The complete colouring of L is the map $c_L : \bar{L} \to 3$ defined by

$$c_L(x) = \begin{cases}
2 & \text{if } x \in L \\
1 & \text{if } x \in \{\min \bar{L}, \max \bar{L}\} \text{ and } x \notin L \\
0 & \text{otherwise}
\end{cases}$$

So $(\bar{L}, c_L) \in LIN_3$.

Notice that if L is countable, then L is scattered if and only if \bar{L} is countable.
The bqo \leq_s on countable orders

Lemma

Given linear orders K, L, if $c_K \leq_{col} c_L$, then $K \leq_s L$.
The bqo \leq_s on countable orders

Lemma

*Given linear orders K, L, if $c_K \leq_{\text{col}} c_L$, then $K \leq_s L$.***

From this one gets

Theorem

\leq_s is a bqo on scattered countable linear orders.

Proof.
The bqo \leq_s on countable orders

Lemma

Given linear orders K, L, if $c_K \leq_{col} c_L$, then $K \leq_s L$.

From this one gets

Theorem

\leq_s is a bqo on scattered countable linear orders.

Proof.

If L is countable scattered, then \bar{L} is countable.
The bqo \leq_s on countable orders

Lemma

Given linear orders K, L, if $c_K \leq_{col} c_L$, then $K \leq_s L$.

From this one gets

Theorem

\leq_s is a bqo on scattered countable linear orders.

Proof.

If L is countable scattered, then \bar{L} is countable. By the above lemma, the map $\Phi : K \mapsto c_K$ satisfies

$$\Phi(K) \leq_{col} \Phi(L) \Rightarrow K \leq_s L$$
The bqo \leq_s on countable orders

Lemma
Given linear orders K, L, if $c_K \leq_{col} c_L$, then $K \leq_s L$.

From this one gets

Theorem
\leq_s is a bqo on scattered countable linear orders.

Proof.
If L is countable scattered, then \bar{L} is countable. By the above lemma, the map $\Phi : K \mapsto c_K$ satisfies

$$\Phi(K) \leq_{col} \Phi(L) \Rightarrow K \leq_s L$$

Since \leq_{col} is a bqo on countable orders, \leq_s is a bqo on scattered countable orders.
It remains to consider non-scattered countable orders.
It remains to consider non-scattered countable orders. If L is a countable, non-scattered linear ordering, there are four mutually disjoint possibilities, depending on the existence of *scattered initial or final tails*:

1. $\eta \leq s_L$
2. $L = L_0 + \hat{L}$, for some unique L_0, \hat{L}, with L_0 scattered and $\eta \leq s_{\hat{L}}$
3. $L = \hat{L} + L_1$, for some unique L_1, \hat{L}, with L_1 scattered and $\eta \leq s_{\hat{L}}$
4. $L = L_0 + \hat{L} + L_1$, for some unique L_0, L_1, \hat{L}, with L_0, L_1 scattered and $\eta \leq s_{\hat{L}}$

It remains to show that \leq_s is a bqo on each of these four classes. The orders in case 1 are all \leq_s-equivalent.
The bqo \leq_s on countable orders

It remains to consider non-scattered countable orders. If L is a countable, non-scattered linear ordering, there are four mutually disjoint possibilities, depending on the existence of \textit{scattered initial or final tails}:

1. $\eta \leq_s L$
The bqo \leq_s on countable orders

It remains to consider non-scattered countable orders. If L is a countable, non-scattered linear ordering, there are four mutually disjoint possibilities, depending on the existence of scattered initial or final tails:

1. $\eta \leq_s L$
2. $L = L_0 + \hat{L}$, for some unique L_0, \hat{L}, with L_0 scattered and $\eta \leq_s \hat{L}$
The bqo \leq_s on countable orders

It remains to consider non-scattered countable orders. If L is a countable, non-scattered linear ordering, there are four mutually disjoint possibilities, depending on the existence of scattered initial or final tails:

1. $\eta \leq_s L$
2. $L = L_0 + \hat{L}$, for some unique L_0, \hat{L}, with L_0 scattered and $\eta \leq_s \hat{L}$
3. $L = \hat{L} + L_1$, for some unique L_1, \hat{L}, with L_1 scattered and $\eta \leq_s \hat{L}$
4. $L = L_0 + \hat{L} + L_1$, for some unique L_0, L_1, \hat{L}, with L_0, L_1 scattered and $\eta \leq_s \hat{L}$
The bqo \leq_s on countable orders

It remains to consider non-scattered countable orders. If L is a countable, non-scattered linear ordering, there are four mutually disjoint possibilities, depending on the existence of scattered initial or final tails:

1. $\eta \leq_s L$
2. $L = L_0 + \hat{L}$, for some unique L_0, \hat{L}, with L_0 scattered and $\eta \leq_s \hat{L}$
3. $L = \hat{L} + L_1$, for some unique L_1, \hat{L}, with L_1 scattered and $\eta \leq_s \hat{L}$
4. $L = L_0 + \hat{L} + L_1$, for some unique L_0, L_1, \hat{L}, with L_0, L_1 scattered and $\eta \leq_s \hat{L}$

It remains to show that \leq_s is a bqo on each of these four classes.
The bqo \leq_s on countable orders

It remains to consider non-scattered countable orders. If L is a countable, non-scattered linear ordering, there are four mutually disjoint possibilities, depending on the existence of scattered initial or final tails:

1. $\eta \leq_s L$
2. $L = L_0 + \hat{L}$, for some unique L_0, \hat{L}, with L_0 scattered and $\eta \leq_s \hat{L}$
3. $L = \hat{L} + L_1$, for some unique L_1, \hat{L}, with L_1 scattered and $\eta \leq_s \hat{L}$
4. $L = L_0 + \hat{L} + L_1$, for some unique L_0, L_1, \hat{L}, with L_0, L_1 scattered and $\eta \leq_s \hat{L}$

It remains to show that \leq_s is a bqo on each of these four classes. The orders in case 1 are all \leq_s-equivalent.
Consider case 2, i.e., orders of the form $L = L_0 + \hat{L}$ with L_0 scattered and $\eta \leq_s L$ (the remaining cases are similar).
Consider case 2, i.e., orders of the form $L = L_0 + \hat{L}$ with L_0 scattered and $\eta \leq_s L$ (the remaining cases are similar). For L, M in this class, one has

$$L_0 \leq_s M_0 \Rightarrow L \leq_s M$$
Consider case 2, i.e., orders of the form $L = L_0 + \hat{L}$ with L_0 scattered and $\eta \leq_s L$ (the remaining cases are similar). For L, M in this class, one has

$$L_0 \leq_s M_0 \Rightarrow L \leq_s M$$

Since \leq_s is already being proved to be a bqo on countable scattered linear orders (previous theorem),
Consider case 2, i.e., orders of the form $L = L_0 + \hat{L}$ with L_0 scattered and $\eta \leq_s L$ (the remaining cases are similar). For L, M in this class, one has

$$L_0 \leq_s M_0 \Rightarrow L \leq_s M$$

Since \leq_s is already being proved to be a bqo on countable scattered linear orders (previous theorem), the assignment $L \mapsto L_0$ proves that \leq_s is also a bqo on this class.
Theorem

- If α is a successor ordinal and β is any ordinal, then
 $$\alpha \leq_{s} \beta \iff \alpha \leq \beta$$
\(\leq_s \) on ordinals

Theorem

- If \(\alpha \) is a successor ordinal and \(\beta \) is any ordinal, then
 \[\alpha \leq_s \beta \iff \alpha \leq \beta \]

- If \(\alpha \) is a limit ordinal and \(\beta \) is a successor ordinal, then \(\alpha \nleq_s \beta \)

Corollary

Let \(\beta \) be a non-null ordinal. Then \(\alpha \leq_s \beta \) for every non-null \(\alpha \leq \beta \) if and only if \(\beta \) is countable and a finite multiple of an indecomposable ordinal: \(\beta = \omega \delta m \).
Theorem

- If α is a successor ordinal and β is any ordinal, then $\alpha \leq_s \beta \iff \alpha \leq \beta$
- If α is a limit ordinal and β is a successor ordinal, then $\alpha \not\leq_s \beta$
- If $\alpha = \omega^{\gamma_0} n_0 + \ldots + \omega^{\gamma_k} n_k$, $\beta = \omega^{\delta_0} m_0 + \ldots + \omega^{\delta_h} m_h$ are limit ordinals (i.e., $\gamma_k, \delta_h > 0$), then
Theorem

- If α is a successor ordinal and β is any ordinal, then
 \[\alpha \leq_s \beta \iff \alpha \leq \beta \]
- If α is a limit ordinal and β is a successor ordinal, then $\alpha \not\leq_s \beta$
- If $\alpha = \omega^{\gamma_0} n_0 + \ldots + \omega^{\gamma_k} n_k$, $\beta = \omega^{\delta_0} m_0 + \ldots + \omega^{\delta_h} m_h$ are limit ordinals (i.e., $\gamma_k, \delta_h > 0$), then
 \[\alpha \leq_s \beta \iff \alpha \leq \beta \land \text{cof}(\alpha) = \text{cof}(\beta) \land \gamma_k \leq \delta_h \]
Theorem

- If α is a successor ordinal and β is any ordinal, then
 $\alpha \leq_s \beta \iff \alpha \leq \beta$
- If α is a limit ordinal and β is a successor ordinal, then $\alpha \not\leq_s \beta$
- If $\alpha = \omega^{\gamma_0} n_0 + \ldots + \omega^{\gamma_k} n_k, \beta = \omega^{\delta_0} m_0 + \ldots + \omega^{\delta_h} m_h$ are limit ordinals (i.e., $\gamma_k, \delta_h > 0$), then
 $\alpha \leq_s \beta \iff \alpha \leq \beta \land \operatorname{cof}(\alpha) = \operatorname{cof}(\beta) \land \gamma_k \leq \delta_h$

Corollary

Let β be a non-null ordinal. Then $\alpha \leq_s \beta$ for every non-null $\alpha \leq \beta$ if and only if β is countable and a finite multiple of an indecomposable ordinal: $\beta = \omega^\delta m$.
Definition

A linear order L is strongly surjective if it surjects order-preservingly onto any of its sub-orders, i.e., for any order K, $K \leq L \Rightarrow K \leq sL$.

So, the strongly surjective ordinals are those of the form $\omega \delta m$ for some at most countable δ and $m > 0$.
Strongly surjective orders

This is work in progress, sometimes regressing.
This is work in progress, sometimes regressing.

Definition
A linear order L is *strongly surjective* if it surjects order-preservingly onto any of its sub-orders,
Strongly surjective orders

This is work in progress, sometimes regressing.

Definition
A linear order L is *strongly surjective* if it surjects order-preservingly onto any of its sub-orders, i.e., for any order K,

$$K \leq_i L \Rightarrow K \leq_s L$$
Strongly surjective orders

This is work in progress, sometimes regressing.

Definition
A linear order L is strongly surjective if it surjects order-preservingly onto any of its sub-orders, i.e., for any order K,

$$K \leq_i L \Rightarrow K \leq_s L$$

So, the strongly surjective ordinals are those of the form $\omega^\delta m$ for some at most countable δ and $m > 0$.
Some properties of strongly surjective orders

Strongly surjective orders are not closed under sums (e.g., $\omega \gamma_0 n_0 + \omega \gamma_1 n_1$).

However:

\[\text{Let } I \text{ be any order and, for each } i \in I, \text{ let } L_i \text{ be a strongly surjective order. Then } \sum_{i \in I} L_i \text{ is strongly surjective if and only if, for every non-empty } J \subseteq I, \sum_{j \in J} L_j \leq s \sum_{i \in I} L_i \]

\[\text{If } L, M \text{ are strongly surjective, then } LM \text{ is strongly surjective.} \]

\[\text{If } L \text{ is scattered and } LM \text{ is strongly surjective, then } M \text{ is strongly surjective.} \]

\[\text{If } L \text{ is strongly surjective, then for any ordinal } \alpha, \text{ the } \alpha \text{-th Hausdorff condensation } L(\alpha) \text{ is strongly surjective (and similarly for several other condensations).} \]
Some properties of strongly surjective orders

Strongly surjective orders are not closed under sums (e.g., \(\omega^{\gamma_0} n_0 + \omega^{\gamma_1} n_1 \)).
Some properties of strongly surjective orders

Strongly surjective orders are not closed under sums (e.g., $\omega^{\gamma_0} \cdot n_0 + \omega^{\gamma_1} \cdot n_1$). However:

Let I be any order and, for each $i \in I$, let L_i be a strongly surjective order. Then $\sum_{i \in I} L_i$ is strongly surjective if and only if, for every non-empty $J \subseteq I$,

$$\sum_{j \in J} L_j \leq_s \sum_{i \in I} L_i$$

If L, M are strongly surjective, then LM is strongly surjective.

If L is scattered and LM is strongly surjective, then M is strongly surjective.

If L is strongly surjective, then for any ordinal α, the α-th Hausdorff condensation $L(\alpha)$ is strongly surjective (and similarly for several other condensations).
Some properties of strongly surjective orders

Strongly surjective orders are not closed under sums (e.g., $\omega^{\gamma_0} n_0 + \omega^{\gamma_1} n_1$). However:

- Let I be any order and, for each $i \in I$, let L_i be a strongly surjective order. Then $\sum_{i \in I} L_i$ is strongly surjective if and only if, for every non-empty $J \subseteq I$,
 \[\sum_{j \in J} L_j \leq_s \sum_{i \in I} L_i \]

- If L, M are strongly surjective, then LM is strongly surjective.
Some properties of strongly surjective orders

Strongly surjective orders are not closed under sums (e.g., $\omega^{\gamma_0} n_0 + \omega^{\gamma_1} n_1$). However:

- Let I be any order and, for each $i \in I$, let L_i be a strongly surjective order. Then $\sum_{i \in I} L_i$ is strongly surjective if and only if, for every non-empty $J \subseteq I$,
 $$\sum_{j \in J} L_j \leq_s \sum_{i \in I} L_i$$

- If L, M are strongly surjective, then LM is strongly surjective.
- If L is scattered and LM is strongly surjective, then M is strongly surjective.
Some properties of strongly surjective orders

Strongly surjective orders are not closed under sums (e.g., $\omega^\gamma n_0 + \omega^\gamma n_1$). However:

- Let I be any order and, for each $i \in I$, let L_i be a strongly surjective order. Then $\sum_{i \in I} L_i$ is strongly surjective if and only if, for every non-empty $J \subseteq I$, $\sum_{j \in J} L_j \leq_s \sum_{i \in I} L_i$.

- If L, M are strongly surjective, then LM is strongly surjective.

- If L is scattered and LM is strongly surjective, then M is strongly surjective.

- If L is strongly surjective, then for any ordinal α, the α-th Hausdorff condensation $L^{(\alpha)}$ is strongly surjective (and similarly for several other condensations).
Examples of strongly surjective orders

The order η is strongly surjective.

The following are all the strongly surjective complete orders:

1. $(\omega \gamma n) \ast \omega \delta m$
2. $(\omega \gamma n) \ast \omega \delta m$, for γ, δ countable ordinals and $n, m > 0$
3. $\zeta \alpha m$, for α a countable ordinal and $m > 0$
4. $(\omega \alpha 0) \ast m$ and its reversal $\omega \alpha 0 \ast$,
5. $(\omega \alpha 0) \ast m + (\omega \gamma) \ast \omega$ and its reversal $\omega \gamma \ast m + (\omega \alpha 0) \ast$, m
6. $(\omega \alpha 0) \ast m + \sum_{i \in \omega} (\omega \alpha ji) \ast$ and its reversal $\sum_{i \in \omega} \ast \omega \alpha ji + \omega \alpha 0 m$
Examples of strongly surjective orders

The order η is strongly surjective.
The following are all the strongly surjective complete orders:

- $(\omega^\gamma n)^*, \omega^\delta m, (\omega^\gamma n)^* + \omega^\delta m$, for γ, δ countable ordinals and $n, m > 0$
- $\zeta^\alpha m$, for α a countable ordinal and $m > 0$
- $(\omega^{\alpha_0})^* m$ and its reversal $\omega^{\alpha_0} \omega^*$
- $(\omega^{\alpha_0})^* m + (\omega^\gamma)^* \omega$ and its reversal $\omega^\gamma \omega^* + \omega^{\alpha_0} m$
- $(\omega^{\alpha_0})^* m + \sum_{i \in \omega}(\omega^{\alpha_j})^* \omega$ and its reversal $\sum_{i \in \omega} \omega^{\alpha_j} + \omega^{\alpha_0} m$
A descriptive set theoretic result

Finding all strongly surjective orders with one gap is doable but requires rather long and tedious computation by cases.
A descriptive set theoretic result

Finding all strongly surjective orders with one gap is doable but requires rather long and tedious computation by cases. For those with two or more gaps the computation seems to explode.
Finding all strongly surjective orders with one gap is doable but requires rather long and tedious computation by cases. For those with two or more gaps the computation seems to explode. No clue how to identify those with infinitely many gaps.
A descriptive set theoretic result

Finding all strongly surjective orders with one gap is doable but requires rather long and tedious computation by cases. For those with two or more gaps the computation seems to explode. No clue how to identify those with infinitely many gaps.

A reason for this difficulty may be suggested by the following
A descriptive set theoretic result

Finding all strongly surjective orders with one gap is doable but requires rather long and tedious computation by cases. For those with two or more gaps the computation seems to explode. No clue how to identify those with infinitely many gaps.

A reason for this difficulty may be suggested by the following

Theorem

The class of strongly surjective orders is a Π^1_2 subset of LO. Moreover it is both Σ^1_1-hard and Π^1_1-hard.
A descriptive set theoretic result

Finding all strongly surjective orders with one gap is doable but requires rather long and tedious computation by cases. For those with two or more gaps the computation seems to explode. No clue how to identify those with infinitely many gaps.

A reason for this difficulty may be suggested by the following

Theorem

The class of strongly surjective orders is a Π^1_2 subset of LO. Moreover it is both Σ^1_1-hard and Π^1_1-hard

We do not know any sharper classification.
Uncountable strongly surjective orders

All examples of strongly surjective orders presented so far were countable.
All examples of strongly surjective orders presented so far were countable. **Question.** Is there an uncountable strongly surjective orders?
All examples of strongly surjective orders presented so far were countable.

Question. Is there an uncountable strongly surjective orders?

Note that

Proposition. Any strongly surjective order is *short*, i.e., neither ω_1 nor ω_1^* embed into it.
All examples of strongly surjective orders presented so far were countable.

Question. Is there an uncountable strongly surjective orders?

Note that

Proposition. Any strongly surjective order is short, i.e., neither ω_1 nor ω_1^* embed into it.

Trying to play around with the most familiar (short) uncountable orders does not produce any result. Indeed

Theorem

*The only linear order of the form $\rho_0 \cdot \ldots \cdot \rho_n$, where each ρ_i is one of η, θ, λ, to be strongly surjective is η.***
However, recall the following

Definition. If \(\kappa \) is an infinite cardinal, a linear order \(L \) is \(\kappa \)-dense if it has no end points and any open interval of \(L \) has cardinality \(\kappa \).
However, recall the following

Definition. If κ is an infinite cardinal, a linear order L is κ-dense if it has no end points and any open interval of L has cardinality κ.

Consider the following statement:

φ_κ: Up to isomorphism there is a unique κ-dense suborder of \mathbb{R}.

So φ_{\aleph_0} holds in ZFC, while the consistency of φ_{\aleph_1} with ZFC was proven by Baumgartner. Moreover φ_{\aleph_1} follows from PFA.

The question about the consistency of φ_{\aleph_2} seems to be open.
However, recall the following

Definition. If κ is an infinite cardinal, a linear order L is κ-dense if it has no end points and any open interval of L has cardinality κ.

Consider the following statement:

φ_κ: Up to isomorphism there is a unique κ-dense suborder of \mathbb{R}.

So φ_{\aleph_0} holds in ZFC,

However, recall the following

Definition. If κ is an infinite cardinal, a linear order L is κ-*dense* if it has no end points and any open interval of L has cardinality κ.

Consider the following statement:

ϕ_κ: Up to isomorphism there is a unique κ-dense suborder of \mathbb{R}.

So ϕ_{\aleph_0} holds in ZFC, while the consistency of ϕ_{\aleph_1} with ZFC was proven by Baumgartner. Moreover ϕ_{\aleph_1} follows from PFA.
However, recall the following

Definition. If κ is an infinite cardinal, a linear order L is κ-dense if it has no end points and any open interval of L has cardinality κ.

Consider the following statement:

φ_κ: Up to isomorphism there is a unique κ-dense suborder of \mathbb{R}.

So φ_{\aleph_0} holds in ZFC, while the consistency of φ_{\aleph_1} with ZFC was proven by Baumgartner. Moreover φ_{\aleph_1} follows from PFA. The question about the consistency of φ_{\aleph_2} seems to be open.
Uncountable strongly surjective orders

Theorem

Assume φ_κ.

Questions.

▶ What about the existence of an uncountable strongly surjective order in ZFC? In ZFC + CH? In L?
Uncountable strongly surjective orders

Theorem
Assume φ_κ. Then there is a strongly surjective order of cardinality κ. Actually there are infinitely many of them, pairwise non-\leq_i-equivalent.
Uncountable strongly surjective orders

Theorem
Assume φ_κ. Then there is a strongly surjective order of cardinality κ. Actually there are infinitely many of them, pairwise non-\leq_i-equivalent.

Questions.
- What about the existence of an uncountable strongly surjective order in ZFC? In ZFC + CH? In L?