Paley-Wiener theorems for the U_n-spherical transform on the Heisenberg group

Fulvio Ricci
(joint work with Francesca Astengo and Bianca Di Blasio)

Scuola Normale Superiore, Pisa

XXXIII Convegnetto di Analisi Armonica
Alba, June 17, 2013
U_n-invariant differential operators on H_n

The Heisenberg group H_n is $\mathbb{C}^n \times \mathbb{R}$ with product

$$(z, t)(z', t') = \left(z + z', t + t' - \frac{1}{2} \text{Im} \langle z, z' \rangle \right)$$

with $z = x + iy \in \mathbb{C}^n$ and $t \in \mathbb{R}$.

The unitary group U_n acts on H_n by the automorphisms

$$k \cdot (z, t) = (kz, t)$$

The two commuting operators

$$L = - \sum_{j=1}^{n} (X_j^2 + Y_j^2) \quad \text{(sublaplacian),} \quad T = \partial_t \quad \text{(central derivative)}$$

generate the algebra $\mathbb{D}(H_n)^{U_n}$ of left- and U_n-invariant differential operators on H_n.

Commutativity of $\mathbb{D}(H_n)^{U_n}$ means that $(U_n \ltimes H_n, U_n)$ is a Gelfand pair.
U_n-invariant differential operators on H_n

The Heisenberg group H_n is $\mathbb{C}^n \times \mathbb{R}$ with product

$$(z, t)(z', t') = \left(z + z', t + t' - \frac{1}{2} \text{Im} \langle z, z' \rangle \right)$$

with $z = x + iy \in \mathbb{C}^n$ and $t \in \mathbb{R}$.

The unitary group U_n acts on H_n by the automorphisms

$$k \cdot (z, t) = (kz, t)$$

The two commuting operators

$$L = -\sum_{j=1}^{n}(X_j^2 + Y_j^2) \quad \text{(sublaplacian)}, \quad T = \partial_t \quad \text{(central derivative)}$$

generate the algebra $\mathcal{D}(H_n)^{U_n}$ of left- and U_n-invariant differential operators on H_n.

Commutativity of $\mathcal{D}(H_n)^{U_n}$ means that $(U_n \ltimes H_n, U_n)$ is a Gelfand pair.
U_n-invariant differential operators on H_n

The Heisenberg group H_n is $\mathbb{C}^n \times \mathbb{R}$ with product

$$(z, t)(z', t') = \left(z + z', t + t' - \frac{1}{2} \text{Im} \langle z, z' \rangle \right)$$

with $z = x + iy \in \mathbb{C}^n$ and $t \in \mathbb{R}$.

The unitary group U_n acts on H_n by the automorphisms

$$k \cdot (z, t) = (kz, t)$$

The two commuting operators

$$L = -\sum_{j=1}^{n}(X_j^2 + Y_j^2) \quad \text{(sublaplacian)}, \quad T = \partial_t \quad \text{(central derivative)}$$

generate the algebra $\mathcal{D}(H_n)^{U_n}$ of left- and U_n-invariant differential operators on H_n.

Commutativity of $\mathcal{D}(H_n)^{U_n}$ means that $(U_n \ltimes H_n, U_n)$ is a Gelfand pair.
Spherical functions

The U_n-invariant joint eigenfunctions of L and T, normalized by the condition $\varphi(0, 0) = 1$, are the spherical functions.

Each spherical function is uniquely determined by the pair (ξ, λ) of its eigenvalues relative to $(L, -iT)$.

For each pair of eigenvalues $(\xi, \lambda) \in \mathbb{C}^2$ there exists the corresponding spherical function $\Phi_{\xi, \lambda}$, given by

$$
\Phi_{\xi, \lambda}(z, t) = e^{i\lambda t} e^{-\lambda \frac{|z|^2}{4}} \left(1 + \sum_{k=1}^{\infty} \frac{|z|^{2k}}{(n)_k k! 4^k} \prod_{d=0}^{k-1} (\lambda(2d + n) - \xi) \right)
$$

where $(n)_k = n(n + 1) \cdots (n + k - 1)$.
The U_n-invariant joint eigenfunctions of L and T, normalized by the condition $\varphi(0, 0) = 1$, are the spherical functions.

Each spherical function is uniquely determined by the pair (ξ, λ) of its eigenvalues relative to $(L, -iT)$.

For each pair of eigenvalues $(\xi, \lambda) \in \mathbb{C}^2$ there exists the corresponding spherical function $\Phi_{\xi, \lambda}$, given by

$$\Phi_{\xi, \lambda}(z, t) = e^{i\lambda t} e^{-\lambda |z|^2/4} \left(1 + \sum_{k=1}^{\infty} \frac{|z|^{2k}}{(n)_k k! 4^k} \prod_{d=0}^{k-1} (\lambda(2d + n) - \xi)\right)$$

where $(n)_k = n(n + 1) \cdots (n + k - 1)$
Characters of the U_n-invariant L^1-algebra

The algebra $L^1_{\text{rad}}(H_n)$ of U_n-invariant functions is commutative. The multiplicative linear functionals of $L^1_{\text{rad}}(H_n)$ are given by integration against the \textit{bounded spherical functions}.

The spherical function $\Phi_{\xi,\lambda}$ is bounded in the following two cases:

- (Bessel type) $\lambda = 0$ and $\xi \geq 0$:
 \[\Phi_{\xi,0}(z,t) = 2^{n-1}(n-1)|J_{n-1}(\sqrt{\xi}|z|)| \frac{J_{n-1}(\sqrt{\xi}|z|)}{(\sqrt{\xi}|z|)^{n-1}} \]

- (Laguerre type) $\lambda \in \mathbb{R} \setminus \{0\}$ and $\xi = |\lambda|(2d + n)$, $d \in \mathbb{N}$:
 \[\Phi_{|\lambda|(2d+n),\lambda}(z,t) = e^{i\lambda t} e^{-|\lambda|\frac{|z|^2}{4}} L_d^{(n-1)} \left(|\lambda| \frac{|z|^2}{2} \right) \]
Characters of the U_n-invariant L^1-algebra

The algebra $L^1_{rad}(H_n)$ of U_n-invariant functions is commutative.

The multiplicative linear functionals of $L^1_{rad}(H_n)$ are given by integration against the bounded spherical functions.

The spherical function $\Phi_{\xi,\lambda}$ is bounded in the following two cases:

- **(Bessel type)** $\lambda = 0$ and $\xi \geq 0$:

 $$\Phi_{\xi,0}(z, t) = 2^{n-1}(n-1)! \frac{J_{n-1}(\sqrt{\xi}|z|)}{(\sqrt{\xi}|z|)^{n-1}}$$

- **(Laguerre type)** $\lambda \in \mathbb{R} \setminus \{0\}$ and $\xi = |\lambda|(2d + n)$, $d \in \mathbb{N}$:

 $$\Phi_{|\lambda|(2d+n),\lambda}(z, t) = e^{i\lambda t} e^{-|\lambda| \frac{|z|^2}{4}} L_{d}^{(n-1)}\left(|\lambda| \frac{|z|^2}{2}\right)$$
Characters of the U_n-invariant L^1-algebra

The algebra $L^1_{\text{rad}}(H_n)$ of U_n-invariant functions is commutative.

The multiplicative linear functionals of $L^1_{\text{rad}}(H_n)$ are given by integration against the bounded spherical functions.

The spherical function $\Phi_{\xi,\lambda}$ is bounded in the following two cases:

- **(Bessel type)** $\lambda = 0$ and $\xi \geq 0$:
 \[
 \Phi_{\xi,0}(z, t) = 2^{n-1}(n-1)! \frac{J_{n-1}(\sqrt{\xi}|z|)}{\left(\sqrt{\xi}|z|\right)^{n-1}}
 \]

- **(Laguerre type)** $\lambda \in \mathbb{R} \setminus \{0\}$ and $\xi = |\lambda|(2d + n), d \in \mathbb{N}$:
 \[
 \Phi_{\lambda(2d+n),\lambda}(z, t) = e^{i\lambda t} e^{-|\lambda| \frac{|z|^2}{4}} L_d^{(n-1)} \left(|\lambda| \frac{|z|^2}{2} \right)
 \]
The Gelfand spectrum of $L^1_{rad}(H_n)$ can be homeomorphically embedded into \mathbb{R}^2 as the set

$$\Sigma = \{(\xi, \lambda) : \Phi_{\xi, \lambda} \text{ is bounded}\}$$
The spherical transform

The spherical transform $\mathcal{G} : L^1_{\text{rad}}(H_n) \longrightarrow C_0(\Sigma)$ is defined as

$$\mathcal{G} f(\xi, \lambda) = \int_{H_n} f(z, t) \Phi_{\xi, \lambda}(-z, -t) \, dz \, dt$$

Plancherel formula:

$$\|f\|_2^2 = c_n \int_{-\infty}^{\infty} \sum_{d=0}^{\infty} \left| \mathcal{G} f(|\lambda|(2d + n), \lambda) \right|^2 |\lambda|^n \, d\lambda = \int_{\Sigma} |\mathcal{G} f(\xi, \lambda)|^2 \, d\mu(\xi, \lambda)$$

Inversion formula:

$$f(z, t) = \int_{\Sigma} \mathcal{G} f(\xi, \lambda) \Phi_{\xi, \lambda}(z, t) \, d\mu(\xi, \lambda)$$
The spherical transform

The spherical transform $\mathcal{G} : L^1_{\text{rad}}(H_n) \rightarrow C_0(\Sigma)$ is defined as

$$\mathcal{G} f(\xi, \lambda) = \int_{H_n} f(z, t) \Phi_{\xi, \lambda}(-z, -t) \, dz \, dt$$

Plancherel formula:

$$\|f\|_2^2 = c_n \int_{-\infty}^{\infty} \sum_{d=0}^{\infty} |\mathcal{G} f(|\lambda|(2d + n), \lambda)|^2 |\lambda|^n \, d\lambda = \int_{\Sigma} |\mathcal{G} f(\xi, \lambda)|^2 \, d\mu(\xi, \lambda)$$

Inversion formula:

$$f(z, t) = \int_{\Sigma} \mathcal{G} f(\xi, \lambda) \Phi_{\xi, \lambda}(z, t) \, d\mu(\xi, \lambda)$$
The Schwartz space

Theorem (A-DB-R).

\mathcal{G} is an isomorphism of $S_{\text{rad}}(H_n)$ onto

$$S(\Sigma) = \{ f|_{\Sigma} : f \in S(\mathbb{R}^2) \} \cong S(\mathbb{R}^2) / \{ f : f = 0 \text{ on } \Sigma \}$$

The Schwartz isomorphisms theorem has been extended to all Heisenberg Gelfand pairs $(K \ltimes H_n, K)$ by A-DB-R, and to a large class of nilpotent Gelfand pairs $(K \ltimes N, K)$ by Fisher-R-Yakimova.
The Schwartz space

Theorem (A-DB-R).

\[\mathcal{G} \text{ is an isomorphism of } S_{\text{rad}}(H_n) \text{ onto} \]

\[S(\Sigma) = \{ f|_\Sigma : f \in S(\mathbb{R}^2) \} \cong S(\mathbb{R}^2) / \{ f : f = 0 \text{ on } \Sigma \} \]

The Schwartz isomorphisms theorem has been extended to all Heisenberg Gelfand pairs \((K \ltimes H_n, K)\) by A-DB-R, and to a large class of nilpotent Gelfand pairs \((K \ltimes N, K)\) by Fisher-R-Yakimova.
If f has compact support, we do not need boundedness of $\Phi_{\xi,\lambda}$ for the convergence of the integral

$$Gf(\xi, \lambda) = \int_{H_n} f(z, t) \Phi_{\xi, \lambda}(-z, -t) \, dz \, dt,$$

hence Gf can be extended to all of \mathbb{C}^2.

The formula

$$\Phi_{\xi,\lambda}(z, t) = e^{i\lambda t} e^{-\lambda \frac{|z|^2}{4}} \left(1 + \sum_{k=1}^{\infty} \frac{|z|^{2k}}{(n)_k k! 4^k} \prod_{d=0}^{k-1} \left(\lambda(2d + n) - \xi \right) \right)$$

shows that this extension is holomorphic.

Similarly, if g has compact support in Σ, the inversion formula

$$G^{-1}g = c_n \int_{-\infty}^{\infty} \sum_{d=0}^{\infty} g(|\lambda|(2d + n), \lambda) \Phi_{|\lambda|(2d+n), \lambda} |\lambda|^n \, d\lambda$$

shows that $G^{-1}g$ extends to a homorphic function on $H_n^\mathbb{C} = \mathbb{C}^n \times \mathbb{C}^n \times \mathbb{C}$.
Holomorphic extensions of spherical transforms

If \(f \) has compact support, we do not need boundedness of \(\Phi_{\xi,\lambda} \) for the convergence of the integral

\[
Gf(\xi, \lambda) = \int_{H_n} f(z, t) \Phi_{\xi, \lambda}(-z, -t) \, dz \, dt,
\]

hence \(Gf \) can be extended to all of \(\mathbb{C}^2 \).

The formula

\[
\Phi_{\xi, \lambda}(z, t) = e^{i\lambda t} e^{-\lambda |z|^2/4} \left(1 + \sum_{k=1}^{\infty} \frac{|z|^{2k}}{(n)_k k! 4^k} \prod_{d=0}^{k-1} (\lambda(2d + n) - \xi) \right)
\]

shows that this extension is holomorphic.

Similarly, if \(g \) has compact support in \(\Sigma \), the inversion formula

\[
G^{-1}g = c_n \int_{\mathbb{C}^n} \sum_{d=0}^{\infty} g(|\lambda|(2d + n), \lambda) \Phi_{|\lambda|(2d+n), \lambda} |\lambda|^n \, d\lambda
\]

shows that \(G^{-1}g \) extends to a homorphic function on \(H_n^\mathbb{C} = \mathbb{C}^n \times \mathbb{C}^n \times \mathbb{C} \).
Comparison between Schwartz and holomorphic extensions

Suppose $f \in C_{c,\text{rad}}^\infty(H_n)$. Then $\mathcal{G}f$ admits many Schwartz extensions to \mathbb{R}^2 and one holomorphic extension to \mathbb{C}^2.

In general, the holomorphic extension is not Schwartz on \mathbb{R}^2.

This depends on the fact that $\Phi_{\xi,\lambda}$ grows exponentially, as soon as it is not bounded.
Comparison between Schwartz and holomorphic extensions

Suppose \(f \in C_{c, \text{rad}}(H_n) \). Then \(Gf \) admits many Schwartz extensions to \(\mathbb{R}^2 \) and one holomorphic extension to \(\mathbb{C}^2 \).

In general, the holomorphic extension is \textit{not} Schwartz on \(\mathbb{R}^2 \).

This depends on the fact that \(\Phi_{\xi, \lambda} \) grows exponentially, as soon as it is not bounded.
Characterization of Paley-Wiener spaces

The problem is to determine which space of holomorphic functions one gets on \mathbb{C}^2 (resp. on H_n^C) starting from a given function space of compactly supported radial functions (e.g. $C^\infty_{c,rad}$, $L^2_{c,rad}$, \mathcal{E}'_{rad}).

By analogy with Fourier transform, one expects this space to be characterized by growth conditions in non-real directions.

In loose terms, f being supported on the ball $B_r \subset \mathbb{R}^n$ corresponds to the property that \hat{f} extends to an entire function v satisfying

$$|v(\zeta)| \leq Ce^{r|\text{Im}\,\zeta|}$$
Characterization of Paley-Wiener spaces

The problem is to determine which space of holomorphic functions one gets on \mathbb{C}^2 (resp. on H^C_n) starting from a given function space of compactly supported radial functions (e.g. $C^\infty_{c,\text{rad}}, L^2_{c,\text{rad}}, E'_{\text{rad}}$).

By analogy with Fourier transform, one expects this space to be characterized by growth conditions in non-real directions.

In loose terms, f being supported on the ball $B_r \subset \mathbb{R}^n$ corresponds to the property that \hat{f} extends to an entire function ν satisfying

$$|\nu(\zeta)| \leq C e^{r|\text{Im}\, \zeta|}$$
Several versions of Paley-Wiener theorems on the Heisenberg group exist, mostly related to the Group Fourier transform:
Ando, Thangavelu, Arnal-Ludwig, Narayanan-Thangavelu

More closely related to this work is an article by Führ of 2010, where compact support is referred to the spectral resolution of the sublaplacian L.

In other contexts, there are Paley-Wiener theorems for the Fourier transform on noncompact symmetric spaces:
Helgason, Gangolli-Varadarajan

and for the inverse spherical transform:
Pasquale, Andersen
Radial functions on \(\mathbb{R}^n \)

Consider first the pair \((SO_n \ltimes \mathbb{R}^n, SO_n)\), a poor cousin of \((U_n \ltimes H_n, U_n)\).

The spherical functions are

\[
\Phi_\xi(x) = c_n \frac{J_{n-1}(\sqrt{\xi}|x|)}{(\sqrt{\xi}|x|)^{n-1}}
\]

for \(\xi \in \mathbb{C} \). They are bounded for \(\xi \geq 0 \), i.e., \(\Sigma = [0, +\infty) \)

(the parameter \(\xi \) has been chosen as the \((-\Delta)\)-eigenvalue: \(-\Delta \Phi_\xi = \xi \Phi_\xi\)).

If \(f \) is a radial function with compact support, \(\hat{f} \) is constant on the spheres \(S_r \) centered at 0 and, for \(\xi \in \Sigma \),

\[
Gf(\xi) = \hat{f}(S_{\sqrt{\xi}})
\]

i.e.,

\[
\hat{f}(\lambda_1, \ldots, \lambda_n) = Gf(\lambda_1^2 + \cdots + \lambda_n^2)
\]
Radial functions on \mathbb{R}^n

Consider first the pair $(SO_n \ltimes \mathbb{R}^n, SO_n)$, a poor cousin of $(U_n \ltimes H_n, U_n)$.

The spherical functions are

$$\Phi_\xi(x) = c_n \frac{J_{n-1}(\sqrt{\xi}|x|)}{(\sqrt{\xi}|x|)^{n-1}}$$

for $\xi \in \mathbb{C}$. They are bounded for $\xi \geq 0$, i.e., $\Sigma = [0, +\infty)$

(the parameter ξ has been chosen as the $(-\Delta)$-eigenvalue: $-\Delta \Phi_\xi = \xi \Phi_\xi$).

If f is a radial function with compact support, \hat{f} is constant on the spheres S_r centered at 0 and, for $\xi \in \Sigma$,

$$Gf(\xi) = \hat{f}(S_{\sqrt{\xi}})$$

i.e.,

$$\hat{f}(\lambda_1, \ldots, \lambda_n) = Gf(\lambda_1^2 + \cdots + \lambda_n^2)$$
Radial functions on \mathbb{R}^n

Consider first the pair $(SO_n \ltimes \mathbb{R}^n, SO_n)$, a poor cousin of $(U_n \ltimes H_n, U_n)$.

The spherical functions are

$$\Phi_\xi(x) = c_n \frac{J_{\frac{n}{2} - 1}(\sqrt{\xi}|x|)}{(\sqrt{\xi}|x|)^{\frac{n}{2} - 1}}$$

for $\xi \in \mathbb{C}$. They are bounded for $\xi \geq 0$, i.e., $\Sigma = [0, +\infty)$

(the parameter ξ has been chosen as the $(-\Delta)$-eigenvalue: $-\Delta \Phi_\xi = \xi \Phi_\xi$).

If f is a radial function with compact support, \hat{f} is constant on the spheres S_r centered at 0 and, for $\xi \in \Sigma$,

$$Gf(\xi) = \hat{f}(S_{\sqrt{\xi}})$$

i.e.,

$$\hat{f}(\lambda_1, \ldots, \lambda_n) = Gf(\lambda_1^2 + \cdots + \lambda_n^2)$$
Suppose f is supported on B_r.

If u is the holomorphic extension of $\mathcal{G}f$ to \mathbb{C} and v the holomorphic extension of \hat{f} to \mathbb{C}^n, then

$$v(\zeta_1, \ldots, \zeta_n) = u(\zeta_1^2 + \cdots + \zeta_n^2)$$

Hence

$$|u(\tau)| \leq C \inf_{\zeta_1^2 + \cdots + \zeta_n^2 = \tau} e^{r|\text{Im} \zeta|} = Ce^r \left(\frac{|\tau| - \text{Re} \tau}{2} \right)^{1/2}$$
Radial functions on \mathbb{R}^n

Suppose f is supported on B_r.
If u is the holomorphic extension of $\mathcal{G}f$ to \mathbb{C} and ν the holomorphic extension of \hat{f} to \mathbb{C}^n, then
\[
\nu(\zeta_1, \ldots, \zeta_n) = u(\zeta_1^2 + \cdots + \zeta_n^2)
\]
Hence
\[
|u(\tau)| \leq C \inf_{\zeta_1^2 + \cdots + \zeta_n^2 = \tau} e^{r|\text{Im} \zeta|} = Ce^r\left(\frac{|\tau| - \text{Re} \tau}{2}\right)^{\frac{1}{2}}
\]
Real-variable characterization of the L^2-PW space on \mathbb{R}^n

We borrow the following statement from N. Andersen, M. deJeu, *Real Paley-Wiener theorems and local spectral radius formulas*, TAMS 2010

Theorem (Tuan). $f \in L^2(\mathbb{R}^n)$ has its Fourier transform supported on the ball B_r if and only if

$$\limsup_{k \to \infty} \left\| \Delta^k f \right\|_{L^2(\mathbb{R}^n)}^k \leq r^2$$

Let $D = 4\xi d_\xi^2 + (n + 1)d_\xi$.

Corollary 1. A function $f \in L^2_{rad}(\mathbb{R}^n)$ is supported on B_r if and only if

$$\limsup_{k \to \infty} \left\| D^k (f) \right\|_{L^2(\mathbb{R}^+ \times \mathbb{R}^n, \xi_1^n d\xi)}^k \leq r^2$$

Corollary 2. A function $f \in L^2_{rad}(\mathbb{R}^n)$ has Gf supported on $[0, r]$ if and only if

$$\limsup_{k \to \infty} \left\| \Delta^k f \right\|_{L^2(\mathbb{R}^n)}^k \leq r$$
Real-variable characterization of the L^2-PW space on \mathbb{R}^n

We borrow the following statement from N. Andersen, M. deJeu, *Real Paley-Wiener theorems and local spectral radius formulas*, TAMS 2010

Theorem (Tuan). $f \in L^2(\mathbb{R}^n)$ has its Fourier transform supported on the ball B_r if and only if

$$\limsup_{k \to \infty} \left\| \Delta^k f \right\|_2^{1/k} \leq r^2$$

Let $D = 4\xi d_\xi^2 + (n + 1)d_\xi$.

Corollary 1. A function $f \in L^2_{rad}(\mathbb{R}^n)$ is supported on B_r if and only if

$$\limsup_{k \to \infty} \left\| D^k (Gf) \right\|_2^{1/k}_{L^2(\mathbb{R}^n, \|\xi\|_2^{n-1}d_\xi)} \leq r^2$$

Corollary 2. A function $f \in L^2_{rad}(\mathbb{R}^n)$ has Gf supported on $[0, r]$ if and only if

$$\limsup_{k \to \infty} \left\| \Delta^k f \right\|_{L^2(\mathbb{R}^n)}^{1/k} \leq r$$
Real-variable characterization of the L^2-PW space on \mathbb{R}^n

We borrow the following statement from N. Andersen, M. deJeu, *Real Paley-Wiener theorems and local spectral radius formulas*, TAMS 2010

Theorem (Tuan). $f \in L^2(\mathbb{R}^n)$ has its Fourier transform supported on the ball B_r if and only if

$$\limsup_{k \to \infty} \left\| \Delta^k f \right\|_2^\frac{1}{k} \leq r^2$$

Let $D = 4\xi d_\xi^2 + (n + 1)d_\xi$.

Corollary 1. A function $f \in L^2_{rad}(\mathbb{R}^n)$ is supported on B_r if and only if

$$\limsup_{k \to \infty} \left\| D^k (Gf) \right\|_{L^2(\mathbb{R}^+, \xi^{\frac{n}{2}-1}d\xi)}^\frac{1}{k} \leq r^2$$

Corollary 2. A function $f \in L^2_{rad}(\mathbb{R}^n)$ has Gf supported on $[0, r]$ if and only if

$$\limsup_{k \to \infty} \left\| \Delta^k f \right\|_{L^2(\mathbb{R}^n)}^\frac{1}{k} \leq r$$
The fan Σ
PW theorems for \((U_n \ltimes H_n, H_n)\)

In order to establish an analogue of Corollary 1, one must identify a pair

“norm” on \(H_n \leftrightarrow “differential operator” on the fan \(\Sigma\)

and, for Corollary 2, a pair

“differential operator” on \(H_n \leftrightarrow “norm” on \(\Sigma\)

Various choices are possible in principle.

As the first pair we choose:

- the Korányi norm on \(H_n\):
 \[N(z, t) = (|z|^4 + t^2/16)^{1/4} \]

- the Benson-Ratcliff operator on the fan:
 \[Mg(\xi, \lambda) = \frac{1}{\lambda} \left(\lambda \partial_\lambda + \xi \partial_\xi \right) g(\xi, \lambda) - \left(n - \frac{\xi}{\lambda} \right) \frac{g(\xi + 2\lambda, \lambda) - g(\xi, \lambda)}{2\lambda} \]

 characterized by the property

 \[M(gf) = g \left((|z|^2 + \frac{t}{4}) f \right) \]
PW theorems for \((U_n \ltimes H_n, H_n)\)

In order to establish an analogue of Corollary 1, one must identify a pair

“norm” on \(H_n\) \(\longleftrightarrow\) “differential operator” on the fan \(\Sigma\)

and, for Corollary 2, a pair

“differential operator” on \(H_n\) \(\longleftrightarrow\) “norm” on \(\Sigma\)

Various choices are possible in principle.

As the first pair we choose:

- the Korányi norm on \(H_n\): \(N(z, t) = (|z|^4 + t^2/16)^{1/4}\)
- the Benson-Ratcliff operator on the fan:

\[
Mg(\xi, \lambda) = \frac{1}{\lambda} \left(\lambda \partial_\lambda + \xi \partial_\xi \right) g(\xi, \lambda) - \left(n - \frac{\xi}{\lambda} \right) \frac{g(\xi + 2\lambda, \lambda) - g(\xi, \lambda)}{2\lambda}
\]

characterized by the property

\[
M(Gf) = G\left((|z|^2 + i \frac{t}{4})f \right)
\]
PW theorems for \((U_n \ltimes H_n, H_n)\)

In order to establish an analogue of Corollary 1, one must identify a pair

\[\text{“norm” on } H_n \iff \text{“differential operator” on the fan } \Sigma \]

and, for Corollary 2, a pair

\[\text{“differential operator” on } H_n \iff \text{“norm” on } \Sigma \]

Various choices are possible in principle.

As the first pair we choose:

- the Korányi norm on \(H_n\): \(N(z, t) = (|z|^4 + t^2/16)^{1/4}\)
- the Benson-Ratcliff operator on the fan:
 \[
 Mg(\xi, \lambda) = \frac{1}{\lambda} (\lambda \partial_\lambda + \xi \partial_\xi) g(\xi, \lambda) - \left(n - \frac{\xi}{\lambda} \right) \frac{g(\xi + 2\lambda, \lambda) - g(\xi, \lambda)}{2\lambda}
 \]
 characterized by the property

\[
 M(Gf) = G \left((|z|^2 + i \frac{t}{4}) f \right)
\]
PW theorems for G

Theorem 1a. A function $f \in L^2_{\text{rad}}(H^n)$ is supported on the Korányi ball B_r if and only if

$$\limsup_{k \to \infty} \| M^k(Gf) \|_{L^2(\Sigma)}^{\frac{1}{k}} \leq r^2$$

Theorem 1b. A function $f \in S_{\text{rad}}(H^n)$ is supported on B_r if and only if for one (and then all) $p \in [1, \infty]$ and one (and then all) $j \in \mathbb{N}$

$$\limsup_{k \to \infty} \| \xi^j M^k(Gf) \|_{L^p(\Sigma)}^{\frac{1}{k}} \leq r^2$$

Theorem 1c. A distribution $f \in S'_{\text{rad}}(H^n)$ is supported on B_r if and only if there exists $j \in \mathbb{N}$ such that for one (and then all) $p \in [1, \infty]$

$$\limsup_{k \to \infty} \| (1 + \xi)^{-j} M^k(Gf) \|_{L^p(\Sigma)}^{\frac{1}{k}} \leq r^2$$
PW theorems for G

Theorem 1a. A function $f \in L^2_{rad}(H^n)$ is supported on the Korányi ball B_r if and only if

$$\limsup_{k \to \infty} \left\| M^k(Gf) \right\|^{1/k}_{L^2(\Sigma)} \leq r^2$$

Theorem 1b. A function $f \in S_{rad}(H^n)$ is supported on B_r if and only if for one (and then all) $p \in [1, \infty]$ and one (and then all) $j \in \mathbb{N}$

$$\limsup_{k \to \infty} \left\| \xi^j M^k(Gf) \right\|^{1/k}_{L^p(\Sigma)} \leq r^2$$

Theorem 1c. A distribution $f \in S'_{rad}(H^n)$ is supported on B_r if and only if there exists $j \in \mathbb{N}$ such that for one (and then all) $p \in [1, \infty]$

$$\limsup_{k \to \infty} \left\| (1 + \xi)^{-j} M^k(Gf) \right\|^{1/k}_{L^p(\Sigma)} \leq r^2$$
PW theorems for G

Theorem 1a. A function $f \in L^2_{rad}(H^n)$ is supported on the Korányi ball B_r if and only if

$$\limsup_{k \to \infty} \| M^k (Gf) \|_{L^2(\Sigma)}^{1/k} \leq r^2$$

Theorem 1b. A function $f \in S_{rad}(H^n)$ is supported on B_r if and only if for one (and then all) $p \in [1, \infty]$ and one (and then all) $j \in \mathbb{N}$

$$\limsup_{k \to \infty} \| \xi^j M^k (Gf) \|_{L^p(\Sigma)}^{1/k} \leq r^2$$

Theorem 1c. A distribution $f \in S'_{rad}(H^n)$ is supported on B_r if and only if there exists $j \in \mathbb{N}$ such that for one (and then all) $p \in [1, \infty]$

$$\limsup_{k \to \infty} \| (1 + \xi)^{-j} M^k (Gf) \|_{L^p(\Sigma)}^{1/k} \leq r^2$$
PW theorems for \mathcal{G}^{-1}

For Paley-Wiener theorems in the other direction we choose:

- the sublaplacian L on H_n
- the ξ-coordinate on Σ

Theorem 2a. A function $f \in L^2_{rad}(H^n)$ has $\mathcal{G}f$ supported on the subset $\{\xi \leq r\} \subset \Sigma$ if and only if

$$\limsup_{k \to \infty} \| L^k f \|_{L^2(H^n)}^\frac{1}{k} \leq r$$

Theorem 2b. A function $f \in S_{rad}(H^n)$ has $\mathcal{G}f$ supported on $\{\xi \leq r\}$ if and only if for one (and then all) $p \in [1, \infty]$ and one (and then all) $j \in \mathbb{N}$

$$\limsup_{k \to \infty} \| N^j L^k f \|_{L^p(\Sigma)}^\frac{1}{k} \leq r$$

Theorem 2c. A distribution $f \in S'_{rad}(H^n)$ has $\mathcal{G}f$ supported on $\{\xi \leq r\}$ if and only if there exists $j \in \mathbb{N}$ such that for one (and then all) $p \in [1, \infty]$

$$\limsup_{k \to \infty} \| (1 + N)^{-j} L^k f \|_{L^p(\Sigma)}^\frac{1}{k} \leq r$$
PW theorems for \mathcal{G}^{-1}

For Paley-Wiener theorems in the other direction we choose:

- the sublaplacian L on H_n
- the ξ-coordinate on Σ

Theorem 2a. A function $f \in L^2_{\text{rad}}(H^n)$ has $\mathcal{G}f$ supported on the subset $\{\xi \leq r\} \subset \Sigma$ if and only if

$$\limsup_{k \to \infty} \| L^k f \|_{L^2(H^n)}^\frac{1}{k} \leq r$$

Theorem 2b. A function $f \in S_{\text{rad}}(H^n)$ has $\mathcal{G}f$ supported on $\{\xi \leq r\}$ if and only if for one (and then all) $p \in [1, \infty]$ and one (and then all) $j \in \mathbb{N}$

$$\limsup_{k \to \infty} \| \mathcal{N}^j L^k f \|_{L^p(\Sigma)}^\frac{1}{k} \leq r$$

Theorem 2c. A distribution $f \in S'_{\text{rad}}(H^n)$ has $\mathcal{G}f$ supported on $\{\xi \leq r\}$ if and only if there exists $j \in \mathbb{N}$ such that for one (and then all) $p \in [1, \infty]$

$$\limsup_{k \to \infty} \|(1 + \mathcal{N})^{-j} L^k f \|_{L^p(\Sigma)}^\frac{1}{k} \leq r$$
PW theorems for G^{-1}

For Paley-Wiener theorems in the other direction we choose:

- the sublaplacian L on H_n
- the ξ-coordinate on Σ

Theorem 2a. A function $f \in L^2_{\text{rad}}(H^n)$ has Gf supported on the subset $\{\xi \leq r\} \subset \Sigma$ if and only if

$$\limsup_{k \to \infty} \|L^k f\|_{L^2(H_n)}^{1/k} \leq r$$

*Theorem 2b.** A function $f \in S_{\text{rad}}(H^n)$ has Gf supported on $\{\xi \leq r\}$ if and only if for one (and then all) $p \in [1, \infty]$ and one (and then all) $j \in \mathbb{N}$

$$\limsup_{k \to \infty} \left\|N^j L^k f\right\|_{L^p(\Sigma)}^{1/k} \leq r$$

*Theorem 2c.** A distribution $f \in S'_{\text{rad}}(H^n)$ has Gf supported on $\{\xi \leq r\}$ if and only if there exists $j \in \mathbb{N}$ such that for one (and then all) $p \in [1, \infty]$

$$\limsup_{k \to \infty} \left\|(1 + N)^{-j} L^k f\right\|_{L^p(\Sigma)}^{1/k} \leq r$$
PW theorems for G^{-1}

For Paley-Wiener theorems in the other direction we choose:

- the sublaplacian L on H_n
- the ξ-coordinate on Σ

Theorem 2a. A function $f \in L^2_{\text{rad}}(H^n)$ has Gf supported on the subset $\{\xi \leq r\} \subset \Sigma$ if and only if

$$\limsup_{k \to \infty} \| L^k f \|_{L^2(H_n)}^k \leq r$$

Theorem 2b. A function $f \in S_{\text{rad}}(H^n)$ has Gf supported on $\{\xi \leq r\}$ if and only if for one (and then all) $p \in [1, \infty]$ and one (and then all) $j \in \mathbb{N}$

$$\limsup_{k \to \infty} \| N^j L^k f \|_{L^p(\Sigma)}^k \leq r$$

Theorem 2c. A distribution $f \in S'_{\text{rad}}(H^n)$ has Gf supported on $\{\xi \leq r\}$ if and only if there exists $j \in \mathbb{N}$ such that for one (and then all) $p \in [1, \infty]$

$$\limsup_{k \to \infty} \|(1 + N)^{-j} L^k f \|_{L^p(\Sigma)}^k \leq r$$
PW theorems for \(G^{-1} \)

For Paley-Wiener theorems in the other direction we choose:

- the sublaplacian \(L \) on \(H_n \)
- the \(\xi \)-coordinate on \(\Sigma \)

Theorem 2a. A function \(f \in L^2_{rad}(H^n) \) has \(Gf \) supported on the subset \(\{ \xi \leq r \} \subset \Sigma \) if and only if

\[
\limsup_{k \to \infty} \left\| L^k f \right\|_{L^2(H_n)}^{\frac{1}{k}} \leq r
\]

Theorem 2b. A function \(f \in S_{rad}(H^n) \) has \(Gf \) supported on \(\{ \xi \leq r \} \) if and only if for one (and then all) \(p \in [1, \infty] \) and one (and then all) \(j \in \mathbb{N} \)

\[
\limsup_{k \to \infty} \left\| N^j L^k f \right\|_{L^p(\Sigma)}^{\frac{1}{k}} \leq r
\]

Theorem 2c. A distribution \(f \in S'_{rad}(H^n) \) has \(Gf \) supported on \(\{ \xi \leq r \} \) if and only if there exists \(j \in \mathbb{N} \) such that for one (and then all) \(p \in [1, \infty] \)

\[
\limsup_{k \to \infty} \left\| (1 + N)^{-j} L^k f \right\|_{L^p(\Sigma)}^{\frac{1}{k}} \leq r
\]
PW theorems for G^{-1}

For Paley-Wiener theorems in the other direction we choose:

- the sublaplacian L on H_n
- the ξ-coordinate on Σ

Theorem 2a. A function $f \in L^2_{rad}(H^n)$ has Gf supported on the subset
\[\{ \xi \leq r \} \subset \Sigma \] if and only if
\[
\limsup_{k \to \infty} \left\| L^k f \right\|_{L^2(H_n)}^{\frac{1}{k}} \leq r
\]

Theorem 2b. A function $f \in S_{rad}(H^n)$ has Gf supported on $\{ \xi \leq r \}$ if and only if for one (and then all) $p \in [1, \infty]$ and one (and then all) $j \in \mathbb{N}$
\[
\limsup_{k \to \infty} \left\| N^j L^k f \right\|_{L^p(\Sigma)}^{\frac{1}{k}} \leq r
\]

Theorem 2c. A distribution $f \in S'_{rad}(H^n)$ has Gf supported on $\{ \xi \leq r \}$ if and only if there exists $j \in \mathbb{N}$ such that for one (and then all) $p \in [1, \infty]$
\[
\limsup_{k \to \infty} \left\| (1 + N)^{-j} L^k f \right\|_{L^p(\Sigma)}^{\frac{1}{k}} \leq r
\]
Spherical transforms of radial distributions

Theorems 1c and 2c require some definition.

Recall that \(G : S_{\text{rad}}(H_n) \to S(\Sigma) \) is an isomorphism.

Then it induces an isomorphism \(G^* : (S(\Sigma))' \to S_{\text{rad}}'(H_n) \).

Since \(S(\Sigma) = S(\mathbb{R}^2)/\{ f : f|_{\Sigma} = 0 \} \),

\[
(S(\Sigma))' = \{ \psi \in S'(\mathbb{R}^2) : \langle \psi, g \rangle = 0, \forall g = 0 \text{ on } \Sigma \} = S_0'(\Sigma)
\]

This is a space of distributions supported on \(\Sigma \) (synthetizable on \(\Sigma \)).

Proposition. A tempered distribution \(\psi \) supported on \(\Sigma \) belongs to \(S_0'(\Sigma) \) if and only for any “Laguerre point” \((\xi_0, \lambda_0) = (|\lambda_0(2d + n)|, \lambda_0) \) with \(\lambda \neq 0 \) there exist a neighborhood \(U \) in \(\mathbb{R}^2 \) and a distribution \(\psi \) on the real line such that, for every \(g \in \mathcal{D}(\mathbb{R}^2) \) supported on \(U \),

\[
\langle \psi, g \rangle_{\mathbb{R}^2} = \langle \psi, g_0 \rangle_{\mathbb{R}}
\]

where \(g_0(\lambda) = g(|\lambda|(2d + n), \lambda) \).
Spherical transforms of radial distributions

Theorems 1c and 2c require some definition.
Recall that $G : S_{\text{rad}}(H_n) \rightarrow S(\Sigma)$ is an isomorphism.
Then it induces an isomorphism $G^* : (S(\Sigma))^\prime \rightarrow S'_{\text{rad}}(H_n)$
Since $S(\Sigma) = S(\mathbb{R}^2)/\{f : f|_{\Sigma} = 0\},$

$$(S(\Sigma))^\prime = \{\psi \in S'(\mathbb{R}^2) : \langle \psi, g \rangle = 0, \forall g = 0 \text{ on } \Sigma\} = S'_0(\Sigma)$$

This is a space of distributions supported on Σ (synthetizable on Σ).

Proposition. A tempered distribution ψ supported on Σ belongs to $S'_0(\Sigma)$ if and only for any “Laguerre point” $(\xi_0, \lambda_0) = (|\lambda_0(2d + n), \lambda_0)$ with $\lambda \neq 0$ there exist a neighborhood U in \mathbb{R}^2 and a distribution ψ on the real line such that, for every $g \in D(\mathbb{R}^2)$ supported on $U,$

$$\langle \psi, g \rangle_{\mathbb{R}^2} = \langle \psi, g_0 \rangle_{\mathbb{R}}$$

where $g_0(\lambda) = g(|\lambda|(2d + n), \lambda).$
Spherical transforms of radial distributions

Theorems 1c and 2c require some definition.
Recall that $G : S_{\text{rad}}(H_n) \rightarrow S(\Sigma)$ is an isomorphism.
Then it induces an isomorphism $G^* : (S(\Sigma))' \rightarrow S'_{\text{rad}}(H_n)$
Since $S(\Sigma) = S(\mathbb{R}^2)/\{ f : f|_\Sigma = 0 \}$,

$$(S(\Sigma))' = \{ \psi \in S'(\mathbb{R}^2) : \langle \psi, g \rangle = 0 , \forall g = 0 \text{ on } \Sigma \} = S_0'(\Sigma)$$

This is a space of distributions supported on Σ (synthetizable on Σ).

Proposition. A tempered distribution ψ supported on Σ belongs to $S_0'(\Sigma)$ if and only for any “Laguerre point” $(\xi_0, \lambda_0) = (|\lambda_0(2d + n), \lambda_0)$ with $\lambda \neq 0$ there exist a neighborhood U in \mathbb{R}^2 and a distribution ψ on the real line such that, for every $g \in D(\mathbb{R}^2)$ supported on U,

$$\langle \psi, g \rangle_{\mathbb{R}^2} = \langle \psi, g_0 \rangle_{\mathbb{R}}$$

where $g_0(\lambda) = g(|\lambda|(2d + n), \lambda)$.
Spherical transforms of radial distributions

Theorems 1c and 2c require some definition. Recall that \(G : S_{\text{rad}}(H_n) \rightarrow S(\Sigma) \) is an isomorphism.

Then it induces an isomorphism \(G^* : (S(\Sigma))' \rightarrow S'_{\text{rad}}(H_n) \)

Since \(S(\Sigma) = S(\mathbb{R}^2)/\{f : f|_\Sigma = 0\} \),

\[
(S(\Sigma))' = \{\psi \in S'(\mathbb{R}^2) : \langle \psi, g \rangle = 0, \forall \ g = 0 \text{ on } \Sigma\} = S'_0(\Sigma)
\]

This is a space of distributions supported on \(\Sigma \) (synthetizable on \(\Sigma \)).

Proposition. A tempered distribution \(\psi \) supported on \(\Sigma \) belongs to \(S'_0(\Sigma) \) if and only for any “Laguerre point” \((\xi_0, \lambda_0) = (|\lambda_0(2d + n), \lambda_0) \) with \(\lambda \neq 0 \) there exist a neighborhood \(U \) in \(\mathbb{R}^2 \) and a distribution \(\psi \) on the real line such that, for every \(g \in D(\mathbb{R}^2) \) supported on \(U \),

\[
\langle \psi, g \rangle_{\mathbb{R}^2} = \langle \psi, g_0 \rangle_{\mathbb{R}}
\]

where \(g_0(\lambda) = g(|\lambda|(2d + n), \lambda) \).
Inverse spherical transforms of synthetizable distributions

Identifying functions $g \in L^2(\Sigma, \mu)$ with the distributions g_μ, it is quite clear that G^* is an extension of G^{-1}. We then set $G^{-1}\psi = G^*\psi$ for $\psi \in S'_0(\Sigma)$.

Proposition. If $f \in S'_{rad}(H_n)$ has compact support, then

(*) \[u(\xi, \lambda) = \langle f, \Phi_{\xi,\lambda} \rangle \]

is an entire function on \mathbb{C}^2 and $Gf = u_\mu$.

Theorem 1c must be interpreted in this sense.

In the other direction (Theorem 2c), if $\psi \in S'_0(\Sigma)$,

(**) \[v(x, y, t) = \langle \psi, \Phi_{.,.}(x, y, t) \rangle \]

gives an entire function on H^C_n, whose restriction to H_n is $G^{-1}\psi$.

Notice that (**) defines an entire function for any $\psi \in \mathcal{E}'(\mathbb{R}^2)$, but this does not satisfy the conditions of Theorem 2c (it is not tempered on H_n) unless it is supported on Σ and synthetizable.
Inverse spherical transforms of synthetizable distributions

Identifying functions \(g \in L^2(\Sigma, \mu) \) with the distributions \(g_\mu \), it is quite clear that \(\mathcal{G}^* \) is an extension of \(\mathcal{G}^{-1} \). We then set \(\mathcal{G}^{-1}\Psi = \mathcal{G}^*\Psi \) for \(\Psi \in S'_0(\Sigma) \).

Proposition. If \(f \in S_{\text{rad}}'(H_n) \) has compact support, then

\[
(*) \quad u(\xi, \lambda) = \langle f, \Phi_{\xi,\lambda} \rangle
\]

is an entire function on \(\mathbb{C}^2 \) and \(\mathcal{G}f = u_\mu \).

Theorem 1c must be interpreted in this sense.

In the other direction (Theorem 2c), if \(\Psi \in S'_0(\Sigma) \),

\[
(**) \quad v(x, y, t) = \langle \Psi, \Phi_{.,.}(x, y, t) \rangle
\]

gives an entire function on \(H_n^C \), whose restriction to \(H_n \) is \(\mathcal{G}^{-1}\Psi \).

Notice that (**) defines an entire function for any \(\Psi \in \mathcal{E}'(\mathbb{R}^2) \), but this does not satisfy the conditions of Theorem 2c (it is not tempered on \(H_n \)) unless it is supported on \(\Sigma \) and synthetizable.
Inverse spherical transforms of synthetizable distributions

Identifying functions \(g \in L^2(\Sigma, \mu) \) with the distributions \(g_\mu \), it is quite clear that \(G^* \) is an extension of \(G^{-1} \). We then set \(G^{-1}\psi = G^*\psi \) for \(\psi \in S'_0(\Sigma) \).

Proposition. If \(f \in S'_{rad}(H_n) \) has compact support, then

\[
(*) \quad u(\xi, \lambda) = \langle f, \Phi_{\xi,\lambda} \rangle
\]

is an entire function on \(C^2 \) and \(Gf = u_\mu. \)

Theorem 1c must be interpreted in this sense.

In the other direction (Theorem 2c), if \(\psi \in S'_0(\Sigma) \),

\[
(**) \quad \nu(x, y, t) = \langle \psi, \Phi_{\cdot,\cdot}(x, y, t) \rangle
\]

gives an entire function on \(H^C_n \), whose restriction to \(H_n \) is \(G^{-1}\psi \).

Notice that (**) defines an entire function for any \(\psi \in \mathcal{E}'(\mathbb{R}^2) \), but this does not satisfy the conditions of Theorem 2c (it is not tempered on \(H_n \)) unless it is supported on \(\Sigma \) and synthetizable.
Inverse spherical transforms of synthetizable distributions

Identifying functions $g \in L^2(\Sigma, \mu)$ with the distributions g_μ, it is quite clear that G^* is an extension of G^{-1}. We then set $G^{-1}\Psi = G^*\Psi$ for $\Psi \in S'_0(\Sigma)$.

Proposition. If $f \in S'_{rad}(H_n)$ has compact support, then

$$(*) \quad u(\xi, \lambda) = \langle f, \Phi_{\xi, \lambda} \rangle$$

is an entire function on \mathbb{C}^2 and $Gf = u_\mu$.

Theorem 1c must be interpreted in this sense.

In the other direction (Theorem 2c), if $\Psi \in S'_0(\Sigma)$,

$$(**) \quad v(x, y, t) = \langle \Psi, \Phi_{., .}(x, y, t) \rangle$$

gives an entire function on H^C_n, whose restriction to H_n is $G^{-1}\Psi$.

Notice that (***) defines an entire function for any $\Psi \in \mathcal{E}'(\mathbb{R}^2)$, but this does not satisfy the conditions of Theorem 2c (it is not tempered on H_n) unless it is supported on Σ and synthetizable.