A note on Bisexual Galton-Watson Branching Processes in Random Environments

José María Fernández-Ponce
Universidad de Sevilla, SPAIN
ferpon@us.es

Eva María Ortega
Universidad Miguel Hernández, Orihuela (Alicante), SPAIN
evamaria@umh.es

Franco Pellerey
Politecnico di Torino, ITALY
franco.pellerey@polito.it

September 11, 2007

Abstract

A bisexual Galton-Watson branching process is a two–type branching model, in which matings in one generation give rise to random numbers of both males and females in the next. The mating function describes how many mating units are formed from given numbers of males and females. In this paper we consider the case that the distributions of the random numbers of males and females produced by the mating units depend on some fertility parameters evolving randomly in time. By means of a main stochastic comparison result, we show that the total population increases, in some stochastic sense, as the positive dependence between the fertility indexes increases. Simple examples of applications of this result are provided, together with other similar results for a different model of population growth.

AMS Subject Classification:

Key words and phrases: Increasing convex order, increasing directionally convex order, stochastically increasing and directionally convex property (in the sample path sense), branching processes, shock models, immigration models, random environments.